1. y= -x + 3
2. y = x - 3
3. y = 3x + 1
4. y = -3x - 3
<u>Answer:</u>

<u>Step-by-step explanation:</u>
The formula for volume of a cylinder is as follows:

where:
• r = radius (? cm)
• h = height (7 cm).
Substituting the values into the formula:

Now solve for
:
⇒ 
⇒ 
⇒ 
Answer:
The exact answer in terms of radicals is ![x = 5*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%205%2A%5Csqrt%5B3%5D%7B25%7D)
The approximate answer is
(accurate to 5 decimal places)
===============================================
Work Shown:
Let ![y = \sqrt[5]{x^3}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B5%5D%7Bx%5E3%7D)
So the equation reduces to -7 = 8-3y
Let's solve for y
-7 = 8-3y
8-3y = -7
-3y = -7-8 ... subtract 8 from both sides
-3y = -15
y = -15/(-3) ... divide both sides by -3
y = 5
-----------
Since
and y = 5, this means we can equate the two expressions and solve for x

![\sqrt[5]{x^3} = 5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E3%7D%20%3D%205)
Raise both sides to the 5th power

Apply cube root to both sides
![x = \sqrt[3]{125*25}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B125%2A25%7D)
![x = \sqrt[3]{125}*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B125%7D%2A%5Csqrt%5B3%5D%7B25%7D)
![x = \sqrt[3]{5^3}*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B5%5E3%7D%2A%5Csqrt%5B3%5D%7B25%7D)
![x = 5*\sqrt[3]{25}](https://tex.z-dn.net/?f=x%20%3D%205%2A%5Csqrt%5B3%5D%7B25%7D)

Answer: here is an example in the screenshot
it is A,B,C, or D
Step-by-step explanation:
For a given perimeter, the area will be maximized when all the sides are the same length, which makes it actually a square. A square is still a rectangle, though! So, if you know the perimeter, divide it by four to determine the length of each side. Then multiply the length times the width to get the area.
BTW U CAN USE A CALCULATOR