Answer:

Explanation:
Conceptual analysis
We apply the kinematic formula for an object that moves vertically upwards:

Where:
: final speed in ft/s
: initial speed in ft/s
g: acceleration due to gravity in ft/s²
y: vertical position at any time in ft
Known data
For
,
; where h is the maximum height
for y=h, 
Problem development
We replace
,
in the formula (1),
[
Equation (1)
in maximum height(h):
, Then we replace in formula (1):


Equation(2)
We replace (h) of Equation(2) in the Equation (1) :





We use the Planck’s formula:
E = hv
where,
E = energy, h = planck’s constant = 6.6x10^-34 J s, v =
frequency in Hz (Hz = 1 / s)
Subsituting the values to find for E:
E = (6.6×10^-34 J s) * 9.85×10^14 / s
E = 6.5x10^-19 J
Answer:
55 mA
Explanation:
Ohm's law states:
V = IR
where V is voltage, I is current, and R is resistance.
220 V = I (4000 Ω)
I = 0.055 A
I = 55 mA
Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.
The distance of the earth from the sun is
.
<h3>
What is Kepler's third law?</h3>
Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.
By using Kepler's third law, this can be written as,


Substituting the values, we get the value of constant k for mars.


The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.



Hence we can conclude that the distance of the earth from the sun is
.
To know more about Kepler's third law, follow the link given below.
brainly.com/question/7783290.
Answer:
Final momentum after a head on collision is -2kgm/
Explanation:
One ball moves to the right and the other moves opposite and momentum is a vector quantity so that considering the direction
Initial momenta are P₁=2x3=6kgm/s P₂=4x(-2)=-8kgm/s
Final momentum is the vector sum of P(final)= 6-8= -2 kgm/s