The work done on the box by the applied force is zero.
The work done by the force of gravity is 75.95 J
The work done on the box by the normal force is 75.95 J.
<h3>The given parameters:</h3>
- Mass of the box, m = 3.1 kg
- Distance moved by the box, d = 2.5 m
- Coefficient of friction, = 0.35
- Inclination of the force, θ = 30⁰
<h3>What is work - done?</h3>
- Work is said to be done when the applied force moves an object to a certain distance
The work done on the box by the applied force is calculated as;

where;
a is the acceleration of the box
The acceleration of the box is zero since the box moved at a constant speed.

The work done by the force of gravity is calculated as follows;

The work done on the box by the normal force is calculated as follows;

Learn more about work done here: brainly.com/question/8119756
Mass and distance
force /pull of gravity decreases with the increase in separation between the two bodies
the amount of gravity an object possesses is proportional to the mass of that object.
If you are given distance and a period of time, you can calculate
the speed. The velocity of an object is the rate of change of its position with
respect to a frame of reference, and is a function of time. Velocity is
equivalent to a specification of its speed and direction of motion (e.g. 60
km/h to the north).
Answer:
λ1 = 0.0129m = 1.29cm
λ2 = 0.00923m = 0.92 cm
Explanation:
To find the distance between the first order bright fringe and the central peak, can be calculated by using the following formula:
(1)
m: order of the bright fringe = 1
λ: wavelength of the light = 660 nm, 470 nm
D: distance from the screen = 5.50 m
d: distance between slits = 0.280mm = 0.280 *10^⁻3 m
ym: height of the m-th fringe
You replace the values of the variables in the equation (1) for each wavelength:
For λ = 660 nm = 660*10^-9 m

For λ = 470 nm = 470*10^-9 m
