1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solniwko [45]
3 years ago
9

Find a solution of x dy dx = y2 − y that passes through the indicated points. (a) (0, 1) y = (b) (0, 0) y = (c) 1 6 , 1 6 y = (d

) 4, 1 6 y =
Mathematics
1 answer:
Leni [432]3 years ago
5 0
Answers: 

(a) y = \frac{1}{1 - Cx}, for any constant C

(b) Solution does not exist

(c) y = \frac{256}{256 - 15x}

(d) y = \frac{64}{64 - 15x}

Explanations:

(a) To solve the differential equation in the problem, we need to manipulate the equation such that the expression that involves y is on the left side of the equation and the expression that involves x is on the right side equation.

Note that

 x\frac{dy}{dx} = y^2 - y
\\
\\ \indent xdy = \left ( y^2 - y \right )dx
\\
\\ \indent \frac{dy}{y^2 - y} = \frac{dx}{x}
\\
\\ \indent \int {\frac{dy}{y^2 - y}} = \int {\frac{dx}{x}} 
\\
\\ \indent \boxed{\int {\frac{dy}{y^2 - y}} = \ln x + C_1}      (1)

Now, we need to evaluate the indefinite integral on the left side of equation (1). Note that the denominator y² - y = y(y - 1). So, the denominator can be written as product of two polynomials. In this case, we can solve the indefinite integral using partial fractions.

Using partial fractions:

\frac{1}{y^2 - y} = \frac{1}{y(y - 1)} = \frac{A}{y - 1} + \frac{B}{y}
\\
\\ \indent \Rightarrow \frac{1}{y^2 - y} = \frac{Ay + B(y-1)}{y(y - 1)} 
\\
\\ \indent \Rightarrow \boxed{\frac{1}{y^2 - y} = \frac{(A+B)y - B}{y^2 - y} }      (2)

Since equation (2) has the same denominator, the numerator has to be equal. So,

1 = (A+B)y - B
\\
\\ \indent \Rightarrow (A+B)y - B = 0y + 1
\\
\\ \indent \Rightarrow \begin{cases}
 A + B = 0
& \text{(3)}\\-B = 1
 & \text{(4)}   \end{cases}

Based on equation (4), B = -1. By replacing this value to equation (3), we have

A + B = 0
A + (-1) = 0
A + (-1) + 1 = 0 + 1
A = 1 

Hence, 

\frac{1}{y^2 - y} = \frac{1}{y - 1} - \frac{1}{y}

So,

\int {\frac{dy}{y^2 - y}} = \int {\frac{dy}{y - 1}} - \int {\frac{dy}{y}} 
\\
\\ \indent \indent \indent \indent = \ln (y-1) - \ln y
\\
\\ \indent  \boxed{\int {\frac{dy}{y^2 - y}} = \ln \left ( \frac{y-1}{y} \right ) + C_2}

Now, equation (1) becomes

\ln \left ( \frac{y-1}{y} \right ) + C_2 = \ln x + C_1
\\
\\ \indent \ln \left ( \frac{y-1}{y} \right ) = \ln x + C_1 - C_2
\\
\\ \indent  \frac{y-1}{y} = e^{C_1 - C_2}x
\\
\\ \indent  \frac{y-1}{y} = Cx, \text{ where } C = e^{C_1 - C_2}
\\
\\ \indent  1 - \frac{1}{y} = Cx
\\
\\ \indent \frac{1}{y} = 1 - Cx
\\
\\ \indent \boxed{y = \frac{1}{1 - Cx}}
       (5)

At point (0, 1), x = 0, y = 1. Replacing these values in (5), we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 1 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1



Hence, for any constant C, the following solution will pass thru (0, 1):

\boxed{y = \frac{1}{1 - Cx}}

(b) Using equation (5) in problem (a),

y = \frac{1}{1 - Cx}   (6)

for any constant C.

Note that equation (6) is called the general solution. So, we just replace values of x and y in the equation and solve for constant C.

At point (0,0), x = 0, y =0. Then, we replace these values in equation (6) so that 

y = \frac{1}{1 - Cx}
\\
\\ \indent 0 = \frac{1}{1 - C(0)} = \frac{1}{1 - 0} = 1

Note that 0 = 1 is false. Hence, for any constant C, the solution that passes thru (0,0) does not exist.

(c) We use equation (6) in problem (b) and because equation (6) is the general solution, we just need to plug in the value of x and y to the equation and solve for constant C. 

At point (16, 16), x = 16, y = 16 and by replacing these values to the general solution, we have

y = \frac{1}{1 - Cx}
\\
\\ \indent 16 = \frac{1}{1 - C(16)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 16C}
\\
\\ \indent 16(1 - 16C) = 1
\\ \indent 16 - 256C = 1
\\ \indent - 256C = -15
\\ \indent \boxed{C = \frac{15}{256}}




By replacing this value of C, the general solution becomes

y = \frac{1}{1 - Cx}
\\
\\ \indent y = \frac{1}{1 - \frac{15}{256}x} 
\\ 
\\ \indent y = \frac{1}{\frac{256 - 15x}{256}}
\\
\\
\\ \indent \boxed{y = \frac{256}{256 - 15x}}





This solution passes thru (16,16).

(d) We do the following steps that we did in problem (c):
        - Substitute the values of x and y to the general solution.
        - Solve for constant C

At point (4, 16), x = 4, y = 16. First, we replace x and y using these values so that 

y = \frac{1}{1 - Cx} 
\\ 
\\ \indent 16 = \frac{1}{1 - C(4)} 
\\ 
\\ \indent 16 = \frac{1}{1 - 4C} 
\\ 
\\ \indent 16(1 - 4C) = 1 
\\ \indent 16 - 64C = 1 
\\ \indent - 64C = -15 
\\ \indent \boxed{C = \frac{15}{64}}

Now, we replace C using the derived value in the general solution. Then,

y = \frac{1}{1 - Cx} \\ \\ \indent y = \frac{1}{1 - \frac{15}{64}x} \\ \\ \indent y = \frac{1}{\frac{64 - 15x}{64}} \\ \\ \\ \indent \boxed{y = \frac{64}{64 - 15x}}
You might be interested in
Please help find the slope ​
kolbaska11 [484]
Graph plots and see where is curves
3 0
3 years ago
How to find angle measurements of a triangle when given equations?
krek1111 [17]
This is an example
Hope this helps

8 0
3 years ago
60 is 30% of what number?
Phantasy [73]
Percent means parts out of 100
30%=30/100=3/10

'of' means multiply

60 is 30% of what translates to
60=3/10 times what
multiply both sides by 10/3
600/3=what
200=what
the number is 200
7 0
3 years ago
How do you solve quadratic equations?
masha68 [24]
In any equation there is a variable (usually x). In a quadratic equation there is a lot involved.

-B (+or-) sqrt of b^2 - 4 x A x C
________________________  divide it by
               2 x A
                                                   There is usually an original equation that looks like:  Ax^2 + Bx + C = 0    Use the variables from the equation to the left to fill the upper equation.  (You can also look up a better formula if confused).

8 0
3 years ago
Alex invests his money in an account paying 2% interest compounded semiannually. What is the effective annual yield on this acco
Travka [436]

Answer: 2.01%.

Step-by-step explanation:

Suppose Alex invests $1 into the account for one year. The formula is A=P0⋅(1+rk)N⋅k with P0=$1. We know that r=0.02 and k=2 compounding periods per year. Now, N=1 year. Substituting the values we have A=$1⋅(1+0.022)2=$1.0201. Now, to calculate the effective annual yield, we will use the formula rEFF=A−P0P0. rEFF=1.0201−11=0.0201 or 2.01%. When rounded to two decimals, rEFF=2.01%. However, do not include the % in your answer.

3 0
3 years ago
Other questions:
  • Which pair of expressions is equivalent to each other?
    11·2 answers
  • I need help finding my variable
    10·2 answers
  • Please help! geometry problem 3!
    5·1 answer
  • A pitcher contains 1.75 liters another contains 1800 milliters of apple juice which one has more juice
    14·2 answers
  • Can someone please help me with this question?
    5·2 answers
  • Help someone please​
    9·1 answer
  • Lenny has 21 green blocks the ratio of green blocks to yellow blocks she owns is 3:1 How many blocks does she own.
    14·1 answer
  • the area of a Trapezium is 132 cm². Its height is 14 cm the larger parallel side is longer than the other by 16 cm. find the len
    11·1 answer
  • Work out the value of angle x.<br>Х<br>62°​
    8·2 answers
  • What is the product of (x − 3) and (x + 7)?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!