Answer:
Step-by-step explanation:
The far right side of the triangle is 17 cm, which is the height.
The base would be 34 minus 17 because whole length of the rectangle is 34 and the triangle covers all but 17 of it.
So then you would take 1/2 of 17.
Then multiply it by 17 to get 160.5
Answer:
The value of a₂₇ is 788
Step-by-step explanation:
a₁₉ = 548
a₃₃ = 968
Now,
a₁₉ = 548 can be written as
a + 18d = 548 ...(1) and
a₃₃ = 968 can be written as
a + 32d = 968 ...(2)
Now, from equation (2) we get,
a + 32d = 968
a + 18d + 14d = 968
548 + 14d = 968 (.°. <u>a + 18d = 548</u>)
14d = 968 - 548
14d = 420
d = 420 ÷ 14
d = 30
Now, for the value of a put the value of d = 30 in equation (1)
a + 18d = 548
a + 18(30) = 548
a + 540 = 548
a = 548 - 540
a = 8
Now, For a₂₇
a₂₇ = a + 26d
a₂₇ = 8 + 26(30)
a₂₇ = 8 + 780
a₂₇ = 788
Thus, The value of a₂₇ is 788
<u>-TheUnknownScientist</u>
Answer:
y - 5 = -4(x + 3)
Step-by-step explanation:
This question is asking you to use and make an equation using the base of the "point-slope form." This is a common equation used when dealing with coordinates and graphs in math. The point-slope form equation looks like this:
y - y₁ = m(x - x₁).
We are going to need to use this equation base to create our problem from the information given. If you are wondering what those subscripts of 1 mean (the 1 in y₁ and x₁), I will explain. Remember that:
slope (m) = <u>y - y₁</u>
x - x₁
So, our first y value (which is the y-coordinate of 5 in [-3, 5]) can be added into the problem base that I had mentioned above:
y - <u>5</u> = m(x - x₁).
Now, we need to place the first x value (which is the -3 in [-3, 5]) can be added into the base problem once more:
y - 5 = m(x - (<u>-3</u>)).
Because a negative number with a negative symbol in front of it creates a positive, we can change that as well:
y - 5 = m(x + 3).
Fortunately, the question provides a slope ready for use. The question says that the slope is -4, so we can place this into the equation now:
y - 5 = -4(x + 3).
I hope that this helps.
Answer:
A is corresponding angles are equal
Step-by-step explanation: