Answer:
2758.653
Step-by-step explanation:
I'm super smart
Depends on the number line my guy
Answer:ninguna
Step-by-step explanation:
Answer:
see explanation
Step-by-step explanation:
If A +B = 45° then tan(A+B) = tan45° = 1
Expanding (1 + tanA)(1 + tanB)
= 1 + tanA + tanB + tanAtanB → (1)
Using the Addition formula for tan(A + B)
tan(A+B) =
= 1 ← from above
Hence
tanA + tanB = 1 - tanAtanB ( add tanAtanB to both sides )
tanA + tanB + tanAtanB = 1 ( add 1 to both sides )
1 + tanA + tanB + tanAtanB = 2
Then from (1)
(1 + tanA)(1 + tanB) = 2 ⇒ proven
SU RE sorry okay 20 so so