Answer:
The answer is 1.15m.
Since molality is defined as moles of solute divided by kg of solvent, we need to calculated the moles of H2SO4 and the mass of the solvent, which I presume is water.
We can find the number of H2SO4 moles by using its molarity
C=nV→nH2SO4=C⋅VH2SO4=6.00molesL⋅48.0⋅10−3L=0.288
Since water has a density of 1.00kgL, the mass of solvent is
m=ρ⋅Vwater=1.00kgL⋅0.250L=0.250 kg
Therefore, molality is
m=nmass.solvent=0.288moles0.250kg=1.15m
Answer:
The empirical formula is CH2O, and the molecular formula is some multiple of this
Explanation:
In 100 g of the unknown, there are 40.0⋅g12.011⋅g⋅mol−1 C; 6.7⋅g1.00794⋅g⋅mol−1 H; and 53.5⋅g16.00⋅g⋅mol−1 O.
We divide thru to get, C:H:O = 3.33:6.65:3.34. When we divide each elemental ratio by the LOWEST number, we get an empirical formula of CH2O, i.e. near enough to WHOLE numbers. Now the molecular formula is always a multiple of the empirical formula; i.e. (EF)n=MF.So 60.0⋅g⋅mol−1=n×(12.011+2×1.00794+16.00)g⋅mol−1.Clearly n=2, and the molecular formula is 2×(CH2O) = CxHyOz.
If its one part magnesium and two parts hydroxide id say 88g of magnesium
This might be right. Im not quite sure. This is what my 5th grade science teacher told me. 'Look at the 2 LR's and add them together. Then look at the total amount which is 32. When you add the 2 LR's you get 17. So subtract 17 from 32 and you get 15. So: C:15 is your answer." (LR's stands for liquid reactants)
10+17=17
Total amount is 32
32-17=15
15 is you mass
Hope this Helps