Moving from Ethanol through Propanol to Butanol the physical properties like boiling points, surface tension and viscosity increases because of the increases in intermolecular interactions between the molecules of given compounds.
Explanation:
Ethanol, propanol and butanol all have hydroxyl groups in common, means all have hydrogen bond intractions between their molecules. So, taking the hydrogen bonding interaction constant we are left with only the difference in the number of carbon atoms.
Butanol has the greatest physical properties than other two because it has four carbon atom chain. So, as we know the London Dispersion forces or Van der Waal forces increases with increase in molecular size and chain length of hydrocarbon.
Therefore, the strength of London forces is greater in butanol than other two while ethanol has the smallest chain comparatively hence, lowest physical properties.
The structural form of the element Ge closely resembles the structure of C (diamond).
Diamond is composed of a lattice structure in which atoms of carbon are held together in a face centered cubic lattice.
Germanium, an element in the same group as carbon also forms a face centered cubic lattice that is very similar to that of diamond.
Hence, the structural form of the element Ge closely resembles the structure of C (diamond).
Learn more: brainly.com/question/14578576
Answer:
Similarities: both state the mass of chemical species and they have the same numerical value
Differences: molecular mass refers to one single molecule and molar mass refers to one mole of a molecule
Explanation:
The molecular mass is the value of the mass of each molecule and it is measured in mass units (u). It is calculated adding the mass of each atom of the molecule.
The molar mass is the value of the mass of one mole of molecules, which means the mass of 6.022140857 × 10²³ molecules. The unit is g/mol.
For example, we can consider the methane molecule, which has the chemical formula of CH₄:
Molecular mass CH₄ = C mass + 4 x (H mass)
Molecular mass CH₄ = 12.01 + 4 x (1.01)
Molecular mass CH₄ = 16.05 u
Now to calculate the molar mass we multiply the value of the molecular mass by the Avogadro number and convert the units to g/mol:
Molar mass CH₄: 16.05 x
x 6.022140857 × 10²³ mol⁻¹
Molecular mass CH₄ = 16.05 g / mol
Answer:
The correct option is C
Explanation:
From the question we are told that
The reaction is

Generally
Here
is the change in enthalpy
is the change in the internal energy
is the difference between that number of moles of product and the number of moles of reactant
Looking at the reaction we can discover that the elements that was consumed and the element that was formed is
and
and this are both gases so the change would occur in the number of moles
So
The negative sign in the equation tell us that the enthalpy
would be less than the Internal energy 