1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
3 years ago
10

1. What is the slope of the line that contains the points (2,0) and (4, -3)? *

Mathematics
2 answers:
Alex_Xolod [135]3 years ago
8 0

Answer:

-3/2 ((My answer needs to be 20 characters long.))

Step-by-step explanation:

The negative sign will go before 3/2

the slope as a whole is negative

Helga [31]3 years ago
8 0

Answer:

-3/2

Step-by-step explanation:

slope = rise/ run

slope = (y2 - y1)/(x2 - x1)

slope = -3 - 0/4-2

slope = -3/4-2 = -3/2

-3/2

You might be interested in
Explain how finding sound Cantoni is similar to finding 7×2000 Perry then find each product.
nadezda [96]
It equals 14,000 is the correct answer
6 0
4 years ago
The product of lisa and her twin brothers is 36 and their sum is 13 how old can lisa be
crimeas [40]

Answer:

Lisa is 23 years old.

Step-by-step explanation:

36 (total) - 13 (brothers age) = 23 (Lisa's age)

23+13=36

3 0
3 years ago
Can someone solve this please<br><br>it is solving equations in algebra: x-6=4​
Sholpan [36]
The answer to this equation is 10 = x
7 0
3 years ago
Who should fill out the W-2 form?
denpristay [2]
The taxpayer’s employer fills out the forms because they have the info you need these to turn in your taxes and if your jod is anything like mine they wait last minute to send them out 
7 0
3 years ago
Find the solution of the differential equation f' (t) = t^4+91-3/t
Lynna [10]

Answer:

\displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f'(t) = t^4 + 91 - \frac{3}{t}

\displaystyle f(1) = \frac{1}{4}

<u>Step 2: Integration</u>

<em>Integrate the derivative to find function.</em>

  1. [Derivative] Integrate:                                                                                   \displaystyle \int {f'(t)} \, dt = \int {t^4 + 91 - \frac{3}{t}} \, dt
  2. Simplify:                                                                                                         \displaystyle f(t) = \int {t^4 + 91 - \frac{3}{t}} \, dt
  3. Rewrite [Integration Property - Addition/Subtraction]:                               \displaystyle f(t) = \int {t^4} \, dt + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  4. [1st Integral] Integrate [Integral Rule - Reverse Power Rule]:                     \displaystyle f(t) = \frac{t^5}{5} + \int {91} \, dt - \int {\frac{3}{t}} \, dt
  5. [2nd Integral] Integrate [Integral Rule - Reverse Power Rule]:                   \displaystyle f(t) = \frac{t^5}{5} + 91t - \int {\frac{3}{t}} \, dt
  6. [3rd Integral] Rewrite [Integral Property - Multiplied Constant]:                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3\int {\frac{1}{t}} \, dt
  7. [3rd Integral] Integrate:                                                                                 \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C

Our general solution is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| + C.

<u>Step 3: Find Particular Solution</u>

<em>Find Integration Constant C for function using given condition.</em>

  1. Substitute in condition [Function]:                                                               \displaystyle f(1) = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  2. Substitute in function value:                                                                         \displaystyle \frac{1}{4} = \frac{1^5}{5} + 91(1) - 3ln|1| + C
  3. Evaluate exponents:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3ln|1| + C
  4. Evaluate natural log:                                                                                     \displaystyle \frac{1}{4} = \frac{1}{5} + 91(1) - 3(0) + C
  5. Multiply:                                                                                                         \displaystyle \frac{1}{4} = \frac{1}{5} + 91 - 0 + C
  6. Add:                                                                                                               \displaystyle \frac{1}{4} = \frac{456}{5} - 0 + C
  7. Simplify:                                                                                                         \displaystyle \frac{1}{4} = \frac{456}{5} + C
  8. [Subtraction Property of Equality] Isolate <em>C</em>:                                               \displaystyle -\frac{1819}{20} = C
  9. Rewrite:                                                                                                         \displaystyle C = -\frac{1819}{20}
  10. Substitute in <em>C</em> [Function]:                                                                             \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}

∴ Our particular solution to the differential equation is  \displaystyle f(t) = \frac{t^5}{5} + 91t - 3ln|t| - \frac{1819}{20}.

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

7 0
3 years ago
Other questions:
  • What is 4 to the 1/2 power
    12·1 answer
  • PLZ HELP ME!!!!!!
    12·2 answers
  • What is 1+89789798798798787897897878978998798789789783687367896784674864987.7987898797797798798789675432134567897653424567897654
    8·2 answers
  • You don’t have ti explain just tell me if it’s true or not
    8·2 answers
  • Kieran ran 12 miles in 87 minutes. What was his average time per minute
    10·2 answers
  • ANSWER ASAP DONT SEND A FILE WHAT IS THE TRANSFORMATION????
    14·2 answers
  • 60 = 5(1.07)^x
    10·1 answer
  • What is the slope of the line that passes through (−2, −4) and (3, 7) ?
    15·2 answers
  • Divide: 33,775 by -35
    9·2 answers
  • Quaaaaastion halp me
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!