The residential end-use sector has the largest seasonal variance, with significant spikes in demand every summer and winter. Virtually all homes that have air conditioning use electricity as the main source of cooling in the summer, while winter heating needs are met by a variety of fuels. Some homes use electric resistance heating and electric heat pumps, but even homes with other heating fuels such as natural gas or fuel oil still use some electricity to power furnace fans, boiler circulation pumps, and compressors.
The commercial sector experiences less variance in electricity use, although it shows a noticeable increase in the summer and a slight increase in the winter. Compared to the residential sector, a smaller portion of commercial sector energy consumption is devoted to heating, cooling, and ventilation. However, other energy fuels beyond electricity can be used in the commercial sector to meet both heating and cooling needs. For example, some commercial buildings use natural gas-fired chillers for cooling.
The industrial sector's demand for electricity is relatively flat (with just a slight increase in the summer) because a much smaller portion of its energy consumption (electric and otherwise) is used for heating and cooling. Economic variables generally play a larger role in industrial energy use than weather-related factors. However, seasonal changes can affect industrial activity. For example, in the refining industry, different seasonal slates of petroleum products as well as different seasonal processes may affect electricity needs.
The wavelengths of light that an atom gives off when an electron falls to a lower energy level corresponds to Emission spectrum , Option D is the correct answer.
<h3>What is Emission Spectrum ?</h3>
Light is absorbed or emitted when an electron jumps or falls into an energy level.
The energy of light absorbed or emitted is equal to the difference between the energy of the orbits.
Therefore , the wavelengths of light that an atom gives off when an electron falls to a lower energy level corresponds to Emission spectrum.
To know more about Emission Spectrum
brainly.com/question/13537021
#SPJ1
Visible light spectrum.
The visible light spectrum is part of the electromagnetic radiation spectrum
Answer:
-0.1767°C (Option A)
Explanation:
Let's apply the colligative property of freezing point depression.
ΔT = Kf . m. i
i = Van't Hoff factot (number of ions dissolved). Glucose is non electrolytic so i = 1
m = molality (mol of solute / 1kg of solvent)
We have this data → 0.095 m
Kf is the freezing-point-depression constantm 1.86 °C/m, for water
ΔT = T° frezzing pure solvent - T° freezing solution
(0° - T° freezing solution) = 1.86 °C/m . 0.095 m . 1
T° freezing solution = - 1.86 °C/m . 0.095 m . 1 → -0.1767°C
Amorphous is the answer. A glass is an amorphous solid.