1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Flura [38]
4 years ago
7

The table below shows the amount of money Sarah spends for a craft demonstration. Number of People Attending Cost 5 $15 8 $18 10

$20 15 $25 Sarah spends a total of $60. Based on the information in the table, how many people attended the craft demonstration? 20 30 50 70
Mathematics
1 answer:
masya89 [10]4 years ago
6 0

Answer:

Nobody who paid $18 attended, because that can't be part of $60.

Step-by-step explanation:

4 at $15

10 at $20

15 at $25

=

29 people.

You might be interested in
Find the derivative.
krek1111 [17]

Answer:

\displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

General Formulas and Concepts:

<u>Algebra I</u>

Terms/Coefficients

  • Expanding/Factoring

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = \frac{\sqrt{x}}{e^x}

<u>Step 2: Differentiate</u>

  1. Derivative Rule [Quotient Rule]:                                                                   \displaystyle f'(x) = \frac{(\sqrt{x})'e^x - \sqrt{x}(e^x)'}{(e^x)^2}
  2. Basic Power Rule:                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}(e^x)'}{(e^x)^2}
  3. Exponential Differentiation:                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{(e^x)^2}
  4. Simplify:                                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{e^{2x}}
  5. Rewrite:                                                                                                         \displaystyle f'(x) = \bigg( \frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x \bigg) e^{-2x}
  6. Factor:                                                                                                           \displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

7 0
3 years ago
If f(x) = x^2+ 1 and g(x) = 3x-1, find (f-g)(x)<br><br> Pls help!!!
Contact [7]

Answer:

(f-g)(x) = x^2 - 3x + 2

Step-by-step explanation:

If f(x) = x^2+ 1 and g(x) = 3x-1

Then (f-g)(x) = (x^2+ 1 )(-(3x-1)

(f-g)(x) = x^2 + 1 - 3x + 1

(f-g)(x) = x^2 - 3x + 2

7 0
4 years ago
Read 2 more answers
Solve the Inequality for x<br> x/2+3/2&lt;5/2
charle [14.2K]

Answer:

x<2

Step-by-step explanation:

I didnt feel like typing it out but the explanation is in the picture hope this helps :)

7 0
3 years ago
Which point on the graph is the solution to the system of linear equations? -2x=-y+4 x=-2
Elodia [21]

Answer:

The solution is (-2, 0)

Step-by-step explanation:

Re-write -2x=-y+4 x=-2 in column form:

x=-2

-2x=-y+4

Next, substitute -2 for x in the second equation:

-2(-2) = -y + 4, or:

4 = -y + 4.  Thus, y must be 0.

The solution is (-2, 0)

4 0
3 years ago
The length of a violin string varies inversely with the frequency of its vibrations. A violin string 14 inches long vibrates at
lara31 [8.8K]

Answer: 525 cycles per second.

Step-by-step explanation:

The equation for inverse variation between x and y is given by :-

x_1y_1=x_2y_2       (1)

Given : The length of a violin string varies inversely with the frequency of its vibrations.

A violin string 14 inches long vibrates at a frequency of 450 cycles per second.

Let x =  length of a violin

y=  frequency of its vibrations

To find: The frequency of a 12 inch violin string.

Put x_1=14,\ x_2=12\\y_1=450,\ y_2=y in equation (1) , we get

(14)(450)=(12)(y)  

Divide both sides by 12 , we get

y=\dfrac{(14)(450)}{12}=525

Hence, the frequency of a 12 inch violin string = 525 cycles per second.

3 0
3 years ago
Other questions:
  • Let d represent the distance from the center of the sphere x 2 + y 2 + z 2 − 6 x + 2 y = − 6 to the plane y = 2.
    13·1 answer
  • You need to find the distance across a river, so you make a triangle. BC is 943 feet, m∠B=102.9° and m∠C=18.6° . Find AB.
    5·1 answer
  • What is the least common denominator of the rational expressions below? 2/x^2-3x+5/x^2+x-12
    8·2 answers
  • If ln(x)=−0.123, what does x equal? Express your answer numerically using three significant figures.
    14·1 answer
  • Determine if the following triangle is a right triangle or not using the Pythagorean Theorem Converse. Triangle with side length
    15·1 answer
  • Calculate how much more money does $1000 earn in 8 years compounded daily at 3%,
    7·1 answer
  • Kendal ate 27 1/2 cookies in 5 1/2 minutes. How many cookies does she eat in 2 minutes?
    8·1 answer
  • Solve the equation x^2+6x+1=0 give your answer
    8·1 answer
  • If the circumference is 12 and height is 25. What’s is that area of the cylinder base? And what is the volume?
    7·1 answer
  • Solve: 8x - 14 = 10 - 4x
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!