Answer:
x=1
Step-by-step explanation:
log2( x^2 -x+2) = 1+2log2(x)
Rewriting 1 as log2(2)
log2( x^2 -x+2) = log2(2)+2log2(x)
We know that a log b = log a^b
log2( x^2 -x+2) = log2(2)+log2(x^2)
we know log a + log b = log (ab)
log2( x^2 -x+2) = log2(2*x^2)
Since the bases are the same the terms inside must be equal
x^2 -x+2 = 2x^2
Subtract 2x^2 from each side
-x^2 -x+2 = 0
Multiply by -1
x^2 +x-2 = 0
Factor
(x+2)(x-1)=0
Using the zero product property
x+2 = 0 x-1=0
x=-2 x=1
Checking the solutions
log2( x^2 -x+2) = 1+2log2(x)
X cannot be negative because 2 log2(x) cannot be negative
log2( 1^2 -1+2) = 1+2log2(1)
x=1
Answer: 6
Step-by-step explanation:
5 pounds. If the dog two years ago weighed two less pounds than the dog one year ago, than that is where we are counting from, and since the dog weighs three more pounds than the dog one year ago, we have to add |-2| + |3| = 5 pounds