Answer:
0.78 euros per dollar
Step-by-step explanation:
If 35 euros=$45.00, then every dollar that he has is equivalent to (35/45) euros=35/45=0.78 euros per dollar
(I found the answer from Nonicorp1 on Brainly)
Answer:
Step-by-step explanation:
A suitable table or calculator is needed.
One standard deviation from the mean includes 68.27% of the total, so the number of bottles in the range 20 ± 0.16 ounces will be ...
0.6827·26,000 = 17,750 . . . . . within 20 ± 0.16
__
The number below 1.5 standard deviations below the mean is about 6.68%, so for the given sample size is expected to be ...
0.66799·26,000 = 1737 . . . . . below 19.76
_____
<em>Comment on the first number</em>
The "empirical rule" tells you that 68% of the population is within 1 standard deviation (0.16 ounces) of the mean. When the number involved is expected to be expressed to 5 significant digits, your probability value needs better accuracy than that. To 6 digits, the value is 0.682689, which gives the same "rounded to the nearest integer" value as the one shown above.
Answer:
y = 2cos5x-9/5sin5x
Step-by-step explanation:
Given the solution to the differential equation y'' + 25y = 0 to be
y = c1 cos(5x) + c2 sin(5x). In order to find the solution to the differential equation given the boundary conditions y(0) = 1, y'(π) = 9, we need to first get the constant c1 and c2 and substitute the values back into the original solution.
According to the boundary condition y(0) = 2, it means when x = 0, y = 2
On substituting;
2 = c1cos(5(0)) + c2sin(5(0))
2 = c1cos0+c2sin0
2 = c1 + 0
c1 = 2
Substituting the other boundary condition y'(π) = 9, to do that we need to first get the first differential of y(x) i.e y'(x). Given
y(x) = c1cos5x + c2sin5x
y'(x) = -5c1sin5x + 5c2cos5x
If y'(π) = 9, this means when x = π, y'(x) = 9
On substituting;
9 = -5c1sin5π + 5c2cos5π
9 = -5c1(0) + 5c2(-1)
9 = 0-5c2
-5c2 = 9
c2 = -9/5
Substituting c1 = 2 and c2 = -9/5 into the solution to the general differential equation
y = c1 cos(5x) + c2 sin(5x) will give
y = 2cos5x-9/5sin5x
The final expression gives the required solution to the differential equation.
Y = 1.55x + 3.70
1.55 x 150 = 232.5
232.5 + 3.70 = 236.2
The answer is C 236.20 hope that helped.
Answer:
See explanation below.
Step-by-step explanation:
The prime numbers are bold:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31
a) We can see that as we go higher, twin primes seem less frequent but even considering that, there is an infinite number of twin primes. If you go high enough you will still eventually find a prime that is separated from the next prime number by just one composite number.
b) I think it's interesting the amount of time that has been devoted to prove this conjecture and the amount of mathematicians who have been involved in this. One of the most interesting facts was that in 2004 a purported proof (by R. F. Arenstorf) of the conjecture was published but a serious error was found on it so the conjecture remains open.