Answer:
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted,
c) threshold energy
h f =Ф
Explanation:
It's photoelectric effect was fully explained by Einstein by the expression
Knox = h f - fi
Where K is the kinetic energy of the photoelectrons, f the frequency of the incident radiation and fi the work function of the metal
a) True. The number of photoelectrons is proportional to the amount (intensity) of the incident beam. From the expression above we see that threshold frequency cannot emit electrons.
b) wavelength is related to frequency
λ = c / f
Therefore, as the wavelength increases, the frequency decreases and therefore the energy of the photoelectrons emitted, so there is a wavelength from which electrons cannot be removed from the metal.
c) As the work increases, more frequency radiation is needed to remove the electrons, because there is a threshold energy
h f =Ф
<h2>Answer:</h2>
Phytochemicals are compounds that are produced by plants ("phyto" means "plant"). They are found in fruits, vegetables, grains, beans, and other plants. Some of these phytochemicals are believed to protect cells from damage that could lead to cancer.
<h2><em>So there is two truths given. After an amount of time Ttotal (lets call it ‘t’):
</em></h2><h2><em>
</em></h2><h2><em>The car’s speed is 25m/s
</em></h2><h2><em>The distance travelled is 75m
</em></h2><h2><em>Then we have the formulas for speed and distance:
</em></h2><h2><em>
</em></h2><h2><em>v = a x t -> 25 = a x t
</em></h2><h2><em>s = 0.5 x a x t^2 -> 75 = 0.5 x a x t^2
</em></h2><h2><em>Now, we know that both acceleration and time equal for both truths. So we can say:
</em></h2><h2><em>
</em></h2><h2><em>t = 25 / a
</em></h2><h2><em>t^2 = 75 / (0.5 x a) = 150 / a
</em></h2><h2><em>Since we don’t want to use square root at 2) we go squared for 1):
</em></h2><h2><em>
</em></h2><h2><em>t^2 = (25 / a) ^2 = 625 / a^2
</em></h2><h2><em>t^2 = 150 / a
</em></h2><h2><em>Since t has the same value for both truths we can say:
</em></h2><h2><em>
</em></h2><h2><em>625 / a^2 = 150 / a
</em></h2><h2><em>
</em></h2><h2><em>Thus multiply both sides with a^2:
</em></h2><h2><em>
</em></h2><h2><em>625 = 150 x a, so a = 625 / 150 = 4.17
</em></h2><h2><em>
</em></h2><h2><em>We can now calculate t as well t = 25 * 150 / 625 = 6</em></h2>
Answer:
If one plays ice hockey he should must have necessary equipment to support his sport. These equipment include Ice Skates,Helmet with Cage and Mouth-guard:, Hockey stick, Hockey pants,Hockey gloves, shoulder pads, elbow pads, Shin Guard:Neck guard and Jockstrap (men) or Pelvic protector (women)
Explanation:
Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.