It's nucleus is positively charged because of protons.
a) Gas particles have most of their mass concentrated in the nucleus of the atom.
b) The moving particles undergo perfectly elastic collisions with the walls of the container.
c) The forces of attraction and repulsion between the particles are insignificant.
d) The average kinetic energy of the particles is directly proportional to the absolute temperature.
e) All of the above are postulates of the kinetic molecular theory.
Gas particles have most of their mass concentrated in the nucleus of the atom.
Answer: Option A.
<u>Explanation:</u>
Kinetic Molecular Theory expresses that gas particles are in consistent movement and show flawlessly versatile crashes. Motor Molecular Theory can be utilized to clarify both Charles' and Boyle's Laws. The normal active vitality of an assortment of gas particles is straightforwardly corresponding to total temperature as it were.
The kinetic theory of gases is a significantly critical, however straightforward model of the thermodynamic conduct of gases with which numerous important ideas of thermodynamics were built up.
Answer: C, 36,450.06 moles
Explanation:
Molar mass=478.41
17.19gx478.41moles=36,450.06
Answer:
A Brønsted-Lowry acid.
A Brønsted-Lowry base.
Ammonia is an acceptor of proton.
Explanation:
A Brønsted-Lowry acid is any atom that can donate a proton (H +) to another atom or molecule whereas Brønsted-Lowry base is any species that can accept a proton from another atom or molecule or in other words, a Brønsted-Lowry acid is a proton donor, while on the other hand, a Brønsted-Lowry base is a proton acceptor. The ammonia molecule accepts the hydrogen ion is considered as the Brønsted-Lowry base.
That would be the proton. The number of protons in the nucleus determine which element it is and its properties.