<span>34.2 grams
Lookup the atomic weights of the involved elements
Atomic weight potassium = 39.0983
Atomic weight Chlorine = 35.453
Atomic weight Oxygen = 15.999
Molar mass KClO3 = 39.0983 + 35.453 + 3 * 15.999 = 122.5483 g/mol
Moles KClO3 = 87.4 g / 122.5483 g/mol = 0.713188188 mol
The balanced equation for heating KClO3 is
2 KClO3 = 2 KCl + 3 O2
So 2 moles of KClO3 will break down into 3 moles of oxygen molecules.
0.713188188 mol / 2 * 3 = 1.069782282 mols
So we're going to get 1.069782282 moles of oxygen molecules. Since each molecule has 2 atoms, the mass will be
1.069782282 * 2 * 15.999 = 34.23089345 grams
Rounding the results to 3 significant figures gives 34.2 grams</span>
Answer:
λ = 1.1×10⁸ m
Explanation:
Given data:
Frequency of wave = 2.7 Hz
Wavelength of wave = ?
Solution:
Formula:
Speed of wave = frequency × wavelength
Speed of wave = 3×10⁸ m/s
now we will put the values in formula.
3×10⁸ m/s = 2.7 s⁻¹ × λ
λ = 3×10⁸ m/s /2.7 s⁻¹
λ = 1.1×10⁸ m
Answer:
By taking away research funds if certain standards ar not met
Explanation:
Answer:

Explanation:
Hello!
In this case, since we know the balanced chemical reaction, we are first able to realize there is a 1:3 mole ratio between zinc phosphate and zinc chloride; it means that we can first compute the moles of the desired product via stoichiometry:

Next, since those moles are associated with the theoretical yield of zinc chloride, we obtain the corresponding mass:

Finally, we compute the percent yield by diving the actual yield (18 g) by the theoretical yield:

Best regards!