Answer:
1 zinc
Explanation:
zinc has a +2 charge, and Cl has a -1 each, so one zinc is enough to stabilized the molecule
Answer:
1837.89 Lt
Explanation:
The chemical reaction for this situation is:
NaHCO₃ + HCl → NaCL + H₂O + CO₂ ₍g₎
Where the mola mass we need are:
M NaHCO₃ = 84 g/mol
M CO₂ = 44 g/mol
As we have 6.00 Kg of sodium bicarbonate, then:
6 Kg NaHCO₃ = 71.43 moles of NaHCO₃
Due the stoichiometry of this chemaicl reaction:
1 mol NaHCO₃ = 1 mol CO₂
71.43 moles NaHCO₃ = 71.43 moles CO₂
And considering that CO₂ is an ideal gas, we can use the following formula:
PV=nRT
V = (nRT)/P
n = 71.43 mol
R = 0.083 Ltxatm(molxK)
T = 37°C = 310 K
P = 1 atm
So: V = (71.43x0.083x310)/1
V CO₂ = 1837.89 Lt
<span>covalent. When two atoms share valence electrons, such a type of a bond is called a covalent bond. An example of such a bond could be the H2 molecule, where two H (hydrogen) atoms share electrons in a covalent bond.</span>
I would go yards to feet, feet to inches, inches to centimeters. So 36 yards is 108 feet. There are 12 inches in a foot so 1,296 inches in 108 feet. Multiply that by 2.54 centimeters to get 3,291.84 centimeters in 36 yards.
Answer: Ozone's molecular geometry can be described as bent.
Explanation:
The molecular geometry of the O3 groups has a trigonal planar arrangement.
Here is a quick explanation of the molecular geometry of O3 including a quick description of the O3 bond angles.
Examining the Lewis structure of O3 we can see that there are a pair of unbounded valence electrons at the top of the structure.
Based on VSEPR Theory (Valence Shell Electron Pair Repulsion Theory) these electrons will repel the electron clouds of the two oxygen atoms on the end.
As a result they will be pushed down giving the 03 molecule a bent molecular geometry or shape.
The 03 bond angle will be 116° degrees since it has a Bent molecular geometry