In order to calculate the number of atoms, we must first know the number of moles present. And
moles = (mass present) / (molecular mass)
Therefore, the moles of Mg present are
170 / 24 = 7.08
The number of atoms in a mole of substance is given by Avagadro's Number which is 6.02 x 10^23
Since there are 7.08 moles, there are:
7.08 * 6.02*10^23
= 4.26 * 10^24 atoms
Answer:
0.17 lb
Explanation:
78 g * (1 lb/454 g)=0.17 lb
If you want additional help with chemistry or another subject for FREE, check out growthinyouth.org.
Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g
Answer:
The correct answer is A. 140 atm
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. We convert the unit Celsius into Kelvin:
0 ° C = 273K, 67 ° C = 273 + 67 = 340K; 94 ° C = 273 + 94 = 367K
P1xV1 /T1= P2x V2/T2
P2= ((P1xV1 /T1)xT2)/V2
P2=((88,89atm x 17L/340K)x367K)/12L= <em>135,927625 atm</em>
1.
V = 200 mL (volume)
c = 3 M = 3 mol/L (concentration)
First we convert mL to L:
200 mL = 0.2 L
Then we calculate the moles using the formula: n = V × c = 0.2 L × 3 mol = 0.6 mol
Finally, we just use the molar mass of CaF2 to calculate the actual mass:
molar mass = 78 g/mol
The formula is: m = n × mm (mass = moles × molar mass)
m = 0.6 mol × 78 g/mol = 46.8 g
2.
For this question the steps are exactly like the first question.
V = 50mL = 0.05 L
c = 12 M = 12 mol/L
n = V × c = 0.05 L × 12 mol/L = 0.6 mol
molar mass (HCl) = 36.5 g/mol
m = n × mm = 0.6 mol × 36.5 g/mol = 21.9 g.
3.
The steps for this question are the opposite way.
m(K2CO3) = 250 g
molar mass = 138 g/mol
n = m ÷ mm = 1.81 mol
c = 2 mol/L
V = n ÷ c = 1.81 mol ÷ 2 mol/L = 0.905 L = 905 mL