Answer:
0.8976 seconds
Explanation:
The period of oscillation for the simple harmonic motion can be found using the formula ...
T = 2π√(d/g)
where d is the displacement of the spring due to the attached weight, and g is the acceleration due to gravity.
__
For d = 0.20 meters, the period is ...
T = 2π√(0.20/9.8) ≈ 0.8976 . . . . seconds
_____
<em>Additional comment</em>
The formula for the oscillator period is usually seen as ...
T = 2π√(m/k)
where m is the mass in the system and k is the spring constant. The value of the spring constant is calculated from ...
k = mg/d
Using that in the formula, we find it simplifies to ...

Answer and Explanation:
If the ant was to crawl 50cm to the right, then come back 30 cm, then the total distance walked would be <u>80cm</u>.
- Combine 50cm and 30cm to get 80 cm.
For displacement, the answer is <u>20 cm.</u>
- When calculating displacement, you use the initial (starting) distance. and subtract that from the final distance, giving you the displacement, or the amount traveled from the starting point to the final point if you were to make a straight line from the starting point to end point. (0 to 50, then back 30 the same direction, so subtract 30 from 50 to get 20)
<em><u>#teamtrees #PAW (Plant And Water)</u></em>
<em><u>I hope this helps!</u></em>
Answer:
I think it would be using a battery recet
Explanation:
The wavelengths of terrestrial radiation from earth's surface are concentrated in thermal infrared spectrum.
<u>Explanation:</u>
The wavelengths used in thermal infrared are in the range of micrometer ranging from 8 to 15. Terrestrial radiation is defined as the radiation that is originating from earth due to radioactive materials like uranium, thorium e.t.c.
Increase in terrestrial radiation by the use of radioactive materials will consequently increase global warming as it releases green house gases thereby degrading the quality of earth's atmosphere.
Answer:
Newton's Third Law of Motion
Explanation:
Newton's Third Law of Motion which states that, for every action there is an equal but opposite reaction.
This ultimately implies that, in every interaction, there is a pair of forces acting on the two interacting objects.
In this scenario, a ball bounced by a basketball player on the floor bounces back up at her.
According to Newton's Third Law of Motion, the statement above simply means that in every interaction, there is a pair of forces acting on the two interacting objects i.e the ball and floor. The size of the force on the ball equals the size of the force on the floor. These two forces are called action and reaction forces and are the subject of Newton's third law of motion.
Hence, the ball bounced by the basketball player on the floor would bounce back in equal magnitude.