Answer:
I'm pretty sure it's 37.5 joules of energy
Explanation:
hope this helps!
Answer: 3 Amperes
Explanation:
Voltage of battery = 24 volts
R1 = 3Ω
R2 = 5Ω
Total resistance = ?
Current, I = ?
Since the resistors are connected in series, the total resistance (Rtotal) of the circuit is the sum of each resistance.
i.e Rtotal = R1 + R2
Rtotal = 3Ω + 5Ω = 8Ω
Now recall that voltage = current x resistance
i.e V = I x Rtotal
24volts = I x 8Ω
I = 24 volts / 8Ω
I = 3 amperes
Thus, there is 3 Amperes of current in the circuit
It's a change of motion, in simple terms.
Answer:
The speed of the raft is 1.05 m/s
Explanation:
The equation for the position of the stone is as follows:
y = y0 + v0 · t + 1/2 · g · t²
Where:
y = height of the stone at time t
y0 = initial height
v0 = initial speed
t = time
g = acceleration due to gravity
The equation for the position of the raft is as follows:
x = x0 + v · t
Where:
x = position of the raft at time t
x0 = initial position
v = velocity
t = time
To find the speed of the raft, we have to know how much time the raft traveled until the stone reached the river. For that, we can calculate the time of free fall of the stone:
y = y0 + v0 · t + 1/2 · g · t² (v0=0 because the stone is dropped from rest)
If we place the origin of the frame of reference at the river below the bridge:
0 m = 95.6 m - 9.8 m/s² · t²
-95.6 m / -9,8 m/s² = t²
t = 3.12 s
We know that the raft traveled (4.84 m - 1.56 m) 3.28 m in that time, then the velocity of the raft will be:
x/t = v
3.28 m / 3.12 s = v
v = 1.05 m/s