Let us first know the given: Tennis ball has a mass of 0.003 kg, Soccer ball has a mass of 0.43 kg. Having the same velocity at 16 m/s. First the equation for momentum is P=MV P=Momentum M=Mass V=Velocity. Now let us have the solution for the momentum of tennis ball. Pt=0.003 x 16 m/s= ( kg-m/s ) I use the subscript "t" for tennis. Momentum of Soccer ball Ps= 0.43 x 13m/s = ( km-m/s). If we going to compare the momentum of both balls, the heavier object will surely have a greater momentum because it has a larger mass, unless otherwise the tennis ball with a lesser mass will have a greater velocity to be equal or greater than the momentum of a soccer ball.
The 26th is Fe(iron) and the 50th is Sn(tin)
By definition, power is the amount of energy consumed (or produced) in a second. (or more precisely, it is the rate of change in energy).
so anything which uses energy in a known time period can be labeled with a power rating.
an example for power could be a nuclear plant; traditional nuclear plants produce somewhat close to 1 giga watts (which means 1 giga joules in a second)
- Angle (θ) = 60°
- Force (F) = 20 N
- Distance (s) = 200 m
- Therefore, work done
- = Fs Cos θ
- = (20 × 200 × Cos 60°) J
- = (20 × 200 × 1/2) J
- = (20 × 100) J
- = 2000 J
<u>Answer</u><u>:</u>
<u>2</u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
I think you almost got it.
At the top, the velocity only has horizontal component, so v=12 m/s is v_x, which is v*cos(theta), because v_x is constant, so the same when it was launched or now.
With the value of the initial speed (28 m/s, which is the total speed), you can set
v_x = v * cos( theta ) ---> 12 = 28*cos(theta) --> cos(theta)=12/28=3/7
or theta = 64.62 deg, it is D. Think about it. I hope you see it.