Answer:
The magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°
Explanation:
To find the resultant vector, you first calculate x and y components of the two vectors M and N. The components of the vectors are calculated by using cos and sin function.
For M vector you obtain:

For N vector:

The resultant vector is the sum of the components of M and N:

The magnitude of the resultant vector is:

And the direction of the vector is:

hence, the magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°
Well you need to have lots of heat
Answer:
<h2>Ultraviolet Waves.</h2>
Explanation:
The Sun emits waves called "Solar Waves", which have a wavelengths between 160 and 400 nanometers. According to the electromagnetic spectrum, these waves are defined as Ultraviolet, which have a frequency around the order of
, which is really intense and high energy.
Therefore, the answer is Ultraviolet Waves.
Answer:
m/s^2
Explanation:
Force = mass × acceleration
kgm/s^2 = kg × acceleration
where acceleration = Force ÷ mass
= kg m/s^2 ÷ kg
:Acceleration = m/s^2
Answer:
0.4 m/s
Explanation:
Law of conservation of momentum tell us that the change in momentum of the hammer will be equal to the change in momentum of the astronaut
change in momentum of hammer = change in momentum of astronaut
2 kg (14 m/s - 0 m/s) = 70 kg * (v-0)
v = 0.4 m/s