Well red blood cells carry oxygen to muscles
Circulatory system is probably the answer you are looking for.
1) At tne same temperature and with the same volume, initially the chamber 1 has the dobule of moles of gas than the chamber 2, so the pressure in the chamber 1 ( call it p1) is the double of the pressure of chamber 2 (p2)
=> p1 = 2 p2
Which is easy to demonstrate using ideal gas equation:
p1 = nRT/V = 2.0 mol * RT / 1 liter
p2 = nRT/V = 1.0 mol * RT / 1 liter
=> p1 / p2 = 2.0 / 1.0 = 2 => p1 = 2 * p2
2) Assuming that when the valve is opened there is not change in temperature, there will be 1.00 + 2.00 moles of gas in a volumen of 2 liters.
So, the pressure in both chambers (which form one same vessel) is:
p = nRT/V = 3.0 mol * RT / 2liter
which compared to the initial pressure in chamber 1, p1, is:
p / p1 = (3/2) / 2 = 3/4 => p = (3/4)p1
So, the answer is that the pressure in the chamber 1 decreases to 3/4 its original pressure.
You can also see how the pressure in chamber 2 changes:
p / p2 = (3/2) / 1 = 3/2, which means that the pressure in the chamber 2 decreases to 3/2 of its original pressure.
The correct answer from the choices given is the last option. The can from the <span> car will lose the carbon more quickly because there are fewer solute–solvent collisions. The can in the car has a lower temperature than the one in the refrigerator. At low temperature, the solubility of carbon dioxide in the liquid decrease therefore particles would tend to be in the vapor phase and escape from the liquid.</span>
A physical property is any property that is measurable, whose value describes a state of a physical system. The changes in the physical properties of a system can be used to describe its changes between momentary states. Physical properties are often referred to as observables. They are not modal properties.