Answer:
see explanation
Step-by-step explanation:
Assuming you are factoring the expression
Given
4y² + 26y + 30 ← factor out 2 from each term
= 2(2y² + 13y + 15) ← factor the quadratic
Consider the factors of the product of the coefficient of the y² term and the constant term which sum to give the coefficient of the y- term.
product = 2 × 15 = 30 and sum = 13
the factors are 10 and 3
Use these factors to split the y- term
2y² + 10y + 3y + 15 ( factor the first/second and third/fourth terms )
= 2y(y + 5) + 3(y + 5) ← factor out (y + 5) from each term
= (y + 5)(2y + 3)
Thus
4y² + 26y + 30
= 2(y + 5)(2y + 3)
Answer:
a) ∝A ∈ W
so by subspace, W is subspace of 3 × 3 matrix
b) therefore Basis of W is
={
}
Step-by-step explanation:
Given the data in the question;
W = { A| Air Skew symmetric matrix}
= {A | A = -A^T }
A ; O⁻ = -O⁻^T O⁻ : Zero mstrix
O⁻ ∈ W
now let A, B ∈ W
A = -A^T B = -B^T
(A+B)^T = A^T + B^T
= -A - B
- ( A + B )
⇒ A + B = -( A + B)^T
∴ A + B ∈ W.
∝ ∈ | R
(∝.A)^T = ∝A^T
= ∝( -A)
= -( ∝A)
(∝A) = -( ∝A)^T
∴ ∝A ∈ W
so by subspace, W is subspace of 3 × 3 matrix
A ∈ W
A = -AT
A = ![\left[\begin{array}{ccc}o&a&b\\-a&o&c\\-b&-c&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Do%26a%26b%5C%5C-a%26o%26c%5C%5C-b%26-c%260%5Cend%7Barray%7D%5Cright%5D)
=
![+c\left[\begin{array}{ccc}0&0&0\\0&0&1\\0&-1&0\end{array}\right]](https://tex.z-dn.net/?f=%2Bc%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%260%260%5C%5C0%260%261%5C%5C0%26-1%260%5Cend%7Barray%7D%5Cright%5D)
therefore Basis of W is
={
}
2,200.413 is 2,165.413 to its nearest hundredth.
The answer is 41
Because 90-49
Answer:
$22.87
Step-by-step explanation:
12.99+5.99+2.20=21.18
22.18x.08=1.6944
1.69+22.18=22.87