Answer:
I think B but I could be wrong
Explanation:
Answer:
T_final = 279.4 [°C]
Explanation:
In order to solve this problem, we must use the following equation of thermal energy.

where:
Q = heat = 9457 [cal]
m = mass = 79 [g] = 0.079 [kg]
Cp = specific heat = 0.5 [cal/g*°C]
T_initial = initial temperature = 40 [°C]
T_final = final temperature [°C]
![9457 = 79*0.5*(T_{f}-40)\\239.41=T_{f}-40\\\\T_{f}=279.4[C]](https://tex.z-dn.net/?f=9457%20%3D%2079%2A0.5%2A%28T_%7Bf%7D-40%29%5C%5C239.41%3DT_%7Bf%7D-40%5C%5C%5C%5CT_%7Bf%7D%3D279.4%5BC%5D)
Answer:
Approximately
upwards (assuming that
.)
Explanation:
External forces on this astronaut:
- Weight (gravitational attraction) from the earth (downwards,) and
- Normal force from the floor (upwards.)
Let
denote the magnitude of the normal force on this astronaut from the floor. Since the direction of the normal force is opposite to the direction of the gravitational attraction, the magnitude of the net force on this astronaut would be:
.
Let
denote the mass of this astronaut. The magnitude of the gravitational attraction on this astronaut would be
.
Let
denote the acceleration of this astronaut. The magnitude of the net force on this astronaut would be
.
Rearrange
to obtain an expression for the magnitude of the normal force on this astronaut:
.
Explanation:
<h3>The process in which green plants prepare their food in their body by using carbon dioxide and water in the presence of sunlight is called photosynthesis.</h3>
hope it is helpful to you