1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
3 years ago
7

The illumination of an object by a light source is directly proportional to the strength of the source and inversely proportiona

l to the square of the distance from the source. if two light sources, one four times as strong as the other, are placed 20 ft apart, how far away from the stronger light source should an object be placed on the line between the two sources so as to receive the least illumination
Chemistry
1 answer:
ElenaW [278]3 years ago
5 0
<span>Exactly 4(4 - 2*2^(1/3) + 2^(2/3)) feet, or approximately 12.27023581 feet. Let's first create an equation to calculate the relative intensity of the light based upon the distance D from the brighter light source. The distance from the dimmer light source will of course be (20-D). So the equation will be: B = 4/D^2 + 1/(20-D)^2 The minimum and maximum can only occur at those points where the slope of the equation is 0. And you can determine the slope by using the first derivative. So let's calculate the first derivative. B = 4/D^2 + 1/(20-D)^2 B' = d/dD [ 4/D^2 + 1/(20-D)^2 ] B' = 4 * d/dD [ 1/D^2 ] + d/dD [ 1/(20-D)^2 ] B' = 4(-2)D^(-3) + (-2)(20 - D)^(-3) * d/dD [ 20-D ] B' = -8/D^3 - 2( d/dD [ 20 ] - d/dD [ D ] )/(20 - D)^3 B' = -8/D^3 - 2(0 - 1)/(20 - D)^3 B' = 2/(20 - D)^3 - 8/D^3 Now let's find a zero. B' = 2/(20 - D)^3 - 8/D^3 0 = 2/(20 - D)^3 - 8/D^3 0 = 2D^3/(D^3(20 - D)^3) - 8(20 - D)^3/(D^3(20 - D)^3) 0 = (2D^3 - 8(20 - D)^3)/(D^3(20 - D)^3) 0 = 2D^3 - 8(20 - D)^3 8(20 - D)^3 = 2D^3 4(20 - D)^3 = D^3 4(8000 - 1200D + 60D^2 - D^3) = D^3 32000 - 4800D + 240D^2 - 4D^3 = D^3 32000 - 4800D + 240D^2 - 5D^3 = 0 6400 - 960D + 48D^2 - D^3 = 0 -6400 + 960D - 48D^2 + D^3 = 0 D^3 - 48D^2 + 960D - 6400 = 0 We now have a simple cubic equation that we can use the cubic formulas to solve. Q = (3*960 - (-48)^2)/9 = 64 R = (9*(-48)*960 - 27*(-6400) - 2*(-48)^3)/54 = -384 D = Q^3 + R^2 = 64^3 + (-384)^2 = 409600 Since the value D is positive, there are 2 imaginary and 1 real root. We're only interested in the real root. S = cbrt(-384 + sqrt(409600)) S = cbrt(-384 + 640) S = cbrt(256) S = 4cbrt(4) T = cbrt(-384 - sqrt(409600)) T = cbrt(-384 - 640) T = cbrt(-1024) T = -8cbrt(2) The root will be 4cbrt(4) - 8cbrt(2) + 48/3 So simplify 4cbrt(4) - 8cbrt(2) + 48/3 =4cbrt(4) - 8cbrt(2) + 16 =4(cbrt(4) - 2cbrt(2) + 4) = 4(4 - 2*2^(1/3) + 2^(2/3)) Which is approximately 12.27023581 This result surprises me. I would expect the minimum to happen where the intensity of both light sources match which would be at a distance of 2/3 * 20 = 13.3333 from the brighter light source. Let's verify the calculated value. Using the brightness equation at the top we have: B = 4/D^2 + 1/(20-D)^2 Using the calculated value of 12.27023581, we get B = 4/D^2 + 1/(20-D)^2 B = 4/12.27023581^2 + 1/(20-12.27023581)^2 B = 4/12.27023581^2 + 1/7.72976419^2 B = 4/150.5586868 + 1/59.74925443 B = 0.026567713 + 0.016736611 B = 0.043304324 And the intuition value of 13.33333333 B = 4/D^2 + 1/(20-D)^2 B = 4/13.33333333^2 + 1/(20-13.33333333)^2 B = 4/13.33333333^2 + 1/6.666666667^2 B = 4/177.7777778 + 1/44.44444444 B = 0.0225 +0.0225 B = 0.045 And the calculated value is dimmer. So intuition wasn't correct. So the object should be placed 4(4 - 2*2^(1/3) + 2^(2/3)) feet from the stronger light source, or approximately 12.27023581 feet.</span>
You might be interested in
Explain why it is necessary for a chemical reaction to balance.
atroni [7]
So that it follows the law of conservation of mass
8 0
3 years ago
Read 2 more answers
Which of the following is a transuranium element?<br> Ra<br> Am<br> Tc<br> Pa
lyudmila [28]
Am - it has an atomic number of 95 which is greater than 92.

Transuranium elements are elements with atomic levels greater than 92
3 0
3 years ago
QUESTION 5
mrs_skeptik [129]
Answer is b. Hope it help
7 0
3 years ago
Why would an increase in temperatures be detrimental to the tundra? Select all that apply.
ludmilkaskok [199]

Answer:

I think the answers are... b, d, and maybe a. I don't know for sure. So only put these answers in if you trust me!

Explanation:

I had this very question, and I put in what I think were the answers.

3 0
2 years ago
What is the atomic model that was found after Bohr’s model and how is it better ?
Lyrx [107]
Schrödinger found the quantum mechanical model of the atom after Bohr’s model.
It is better than Bohr’s model because you can use mathematical equations to find electrons certain position. Unlike Bohr’s which is just a “cloud” where the an electron could possibly be.
8 0
3 years ago
Other questions:
  • A reaction product mixture containing hydrocarbons in diethyl ether is washed with saturated aqueous sodium chloride (brine) sol
    5·1 answer
  • Which organ or organs produce estrogen and progesterone?
    9·2 answers
  • When it is winter, the United States receives the least direct solar energy, as compared with the rest of the year. Why does thi
    11·1 answer
  • NEED URGENT HELP WITH SCIENCE HOMEWORK. TRIED MY BEST TO FIGURE OUT BUT COULDNT. I WILL MARK YOU BRAINLIEST!!
    8·1 answer
  • 16 Which change results in the formation of different substances?(1) burning of propane
    8·2 answers
  • How many grams of chlorine are required in order to consume 8 mol of<br> sodium?
    8·1 answer
  • An energy bill indicates that the customer used 1024 kWh in July. How many joules did the customer use?
    7·1 answer
  • When 50.5 g iron(III) oxide reacts with carbon monoxide, 32.2 g iron is produced. What is the percent yield of the reaction?
    10·1 answer
  • A 80.0 g sample of copper (specific heat = 0.20 J/g °C ) is heated and then added to 100 g water at 22.3 °C. The final temperatu
    6·1 answer
  • Which of the following electron configurations represents an element that is MOST LIKELY to bond in a 1:1 ratio with calcium, Ca
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!