According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.
Answer:5.4 g / 13.6 g *100
Explanation:Its is the correct answer
Explanation is in a file
bit.
ly/3a8Nt8n
Answer:
Choice A: approximately
.
Explanation:
Note that the unit of concentration,
, typically refers to moles per liter (that is:
.)
On the other hand, the volume of the two solutions in this question are apparently given in
, which is the same as
(that is:
.) Convert the unit of volume to liters:
.
.
Calculate the number of moles of
formula units in that
of the
solution:
.
Note that
(sulfuric acid) is a diprotic acid. When one mole of
completely dissolves in water, two moles of
ions will be released.
On the other hand,
(sodium hydroxide) is a monoprotic base. When one mole of
formula units completely dissolve in water, only one mole of
ions will be released.
ions and
ions neutralize each other at a one-to-one ratio. Therefore, when one mole of the diprotic acid
dissolves in water completely, it will take two moles of
to neutralize that two moles of
produced. On the other hand, two moles formula units of the monoprotic base
will be required to produce that two moles of
. Therefore,
and
formula units would neutralize each other at a two-to-one ratio.
.
.
Previous calculations show that
of
was produced. Calculate the number of moles of
formula units required to neutralize that
.
Calculate the concentration of a
solution that contains exactly
of
formula units:
.