The answer to the problem is 7/10
Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.
Answer:
A phosphorus atom forms a P3- ion by gaining three electrons.
here
Naturally Occurring Radioactive Materials (also known as NORM) are a wide range of radioactive isotopes that include elements such as carbon 14 and potassium 40, both of which are in the human body. But the main radioactive elements involved in oil and gas production are those found throughout Earth's crust. These elements include uranium and thorium and their respective byproducts, including radon gas.
Based on recommended amount of carbohydrate, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
<h3>How many ounces of endurance formula gatorade g series, endurance formula should a basketball player consume during an hour-long game if it contains 14 grams of carbohydrate per 8 ounces?</h3>
Carbohydrates are food substances metabolized easily by the body to produce energy.
Given that the recommended amount of carbohydrate to consume to maintain performance is 30–60 g/h.
Also 14 grams of carbohydrate found in 8 ounces of the drink.
30 g of carbohydrate will be present in 30 × 8/14 = 17.1 ounces of gatorade g series
60 g of carbohydrate will be present in 60 × 8/14 =34.3 ounces of gatorade g series.
Therefore, a basketball player should consume about 17 - 34 ounces of gatorade g series during the hour-long game.
Learn more about carbohydrates at: brainly.com/question/797978