Answer:
Cu
Fe
Explanation:
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
a) Cu²⁺ (aq) + Mg(s) + Cu(s) + Mg²⁺(aq)
Copper is oxidizing agent it accept two electrons from magnesium and oxidize the Mg and itself get reduced.
b) Fe₂O₃(s) + 3CO(g) → 2Fe(l) + 3CO₂(g)
In this reaction iron is oxidizing agent because iron itself reduced from +3 to 0.
Answer:
29260J
Explanation:
Given parameters:
Mass of water sample = 100g
Initial temperature = 30°C
Final temperature = 100°C
Unknown:
Energy required for the temperature change = ?
Solution:
The amount of heat required for this temperature change can be derived from the expression below;
H = m c (ΔT)
H is the amount of heat energy
m is the mass
c is the specific heat capacity of water = 4.18J/g°C
ΔT is the change in temperature
Now insert the parameters and solve;
H = 100 x 4.18 x (100 - 30)
H = 100 x 4.18 x 70 = 29260J
<span>the noble gases are those who occupy the eighth group of the periodic table and are so called because having the complete valence shell do not need to form bonds with other atoms and are thus in atomic form ...
</span>
The noble gases (also called rare gases) are of the inert gases that constitute the eighteenth [1] group of the periodic table of the elements, ie, the right-most column. They consist of atoms with electron shells full. It includes the following elements: helium neon argon krypton xenon radon Ununoctium <span>Sometimes they (particularly helium) are located together with other gases (mostly nitrogen and methane) into endogenous sources; helium of endogenous origin comes from the decomposition of radioactive elements present in the subsurface that emit α particles (ie ions He2 +): These oxidized species present in the soil and become elio.I atoms of the noble gases are all monatomic gas, not easily liquefiable, present the atmosphere in different percentages; the most common is argon which is approximately the 0.932%.</span>