I recently did this assignment!
Instructions: Read each myth (untruth). Reword it to make a factual statement. Then, give two to three reasons why the myth is untrue. Use complete sentences and support your answer with evidence, using your own words.
________________________________________
Answer:
Myth: A dead organism is the same as a nonliving thing in science.
o Fact: In science, dead is the same as nonliving.
o Evidence: Things that are nonliving never had the characteristics of life, and never will. Things that are dead once did have the characteristics of life, but when they die, they lose some of the characteristics. That is why dead and non-living are NOT the same thing.
Hope this helped!
Have an Amazing day!
~Lola
The electron configuration
1
s
2
2
s
2
2
p
6
3
s
2
3
p
2
is the element Silicon.
The key to deciphering this is to look at the last bit of information of the electron configuration
3
p
2
.
The '3' informs us that the element is in the 3rd Energy Level or row of the periodic table. The 'p' tells us that the element is found in the p-block which are all of the Groups to the right of the transition metals, columns 13-18. The superscript '2' tells us that the element is found in the 2nd column of the p-block Group 14.
Explain in terms of particle behavior why smoke particles cause the detector alarm to sound
Smoke detectors are of many types but they rely on the principle of diffusion of smoke. Diffusion is the movement of particles from a region of high concentration to a region of lower concentration. Smoke particles move in what is known as Brownian motion.
Lets say foxes hunt rabbits. If their are too many foxes then they will compete for the rabbits. The rabbits get outnumbered by the amount of foxes so the foxes kill all the rabbits and the rabbits could eventually go extinct.
Answer:
pH = 5.54
Explanation:
The pH of a buffer solution is given by the <em>Henderson-Hasselbach (H-H) equation</em>:
- pH = pKa + log
![\frac{[CH_3COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_3COO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D)
For acetic acid, pKa = 4.75.
We <u>calculate the original number of moles for acetic acid and acetate</u>, using the <em>given concentrations and volume</em>:
- CH₃COO⁻ ⇒ 0.377 M * 0.250 L = 0.0942 mol CH₃COO⁻
- CH₃COOH ⇒ 0.345 M * 0.250 L = 0.0862 mol CH₃COOH
The number of CH₃COO⁻ moles will increase with the added moles of KOH while the number of CH₃COOH moles will decrease by the same amount.
Now we use the H-H equation to <u>calculate the new pH</u>, by using the <em>new concentrations</em>:
- pH = 4.75 + log
= 5.54