We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
Solution :
When the spacecraft is at halfway point, the distance from the Earth as well as Mars are same. We have to account the masses of the planets. The gravitational force that is exerted by the Earth is greater because of its combined mass with the space probe.
The mass of Earth is greater than the mass of Mars. Therefore, the force of Earth is more than Mars.
You didn't mention it, but the trumpeter herself has to be standing still.
<span>Person C, the one running towards the trumpeter, hears a pitch
that is higher than B-flat. (A)
Person B, the one running away from the trumpeter, hears a pitch
that is lower than B-flat.
Person D, the one standing still the whole time, hears the B-flat.</span>
This is the same question as the one previously but with more details, so I will just use my previous answer.
1800 to 1820 is 20 minutes.1830 to 1838 is 8 minutes.1840 to 1905 is 25 minutes.
The total time travelled is 20+8+25 = 53 minutes = 3180 seconds.
The distance between Glasgow and Edinburgh is 28 + 12 + 34 = 74 km = 74000 m.
So, the average speed is 74000m/3180s = 23.27 m/s (4 s.f.)
Answer:
0
Explanation:
According to Newton's second law, the net force is equal to the mass times the acceleration. Since the car is not accelerating, the net force is 0.