Answer:

Explanation:
As we know that resistance of one copper wire is given as

here we know that

now we have


now we know that such 17 resistors are connected in parallel so we have


Now if a single copper wire has same resistance then its diameter is D and it is given as

now from above two equations we have


now we have

Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>
Both are constants used in the definition of Forces (gravitational and electric,respectively)
Since those constants are proportional to the magnitude of the forces:
Having a small gravitational constant explains why there is no apparent force of attraction with objects of considerable low mass (they would need to have great value of mass for the equation to give an apreciable force)
Electrical interactions are usually strong, and thus require an appropiate constant to depict the phenomenon. We deal in this case with charges really small, but the forces are in different order of magnitude.
Answer:
<h3>a.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

<h3>b.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

Explanation:
<h2>
a.</h2>
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient
the formula is:

where I is the intensity of the beam,
is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:




After travelling 2 cm:




<h2>b</h2>
The optical density od is given by:
.
So, after travelling 1 cm:




After travelling 2 cm:




Answer:
Option A
Explanation:
Ernest Rutherford concluded that the atom has a small, dense center which constitutes the mass of the whole atom. He called it a "Nucleus". He also said that most of the space in the atom is empty.