Answer:
a)
= 928 J
, b)U = -62.7 J
, c) K = 0
, d) Y = 11.0367 m, e) v = 15.23 m / s
Explanation:
To solve this exercise we will use the concepts of mechanical energy.
a) The elastic potential energy is
= ½ k x²
= ½ 2900 0.80²
= 928 J
b) place the origin at the point of the uncompressed spring, the spider's potential energy
U = m h and
U = 8 9.8 (-0.80)
U = -62.7 J
c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also
K = ½ m v²
K = 0
d) write the energy at two points, maximum compression and maximum height
Em₀ = ke = ½ m x²
= mg y
Emo = 
½ k x² = m g y
y = ½ k x² / m g
y = ½ 2900 0.8² / (8 9.8)
y = 11.8367 m
As zero was placed for the spring without stretching the height from that reference is
Y = y- 0.80
Y = 11.8367 -0.80
Y = 11.0367 m
Bonus
Energy for maximum compression and uncompressed spring
Emo = ½ k x² = 928 J
= ½ m v²
Emo =
Emo = ½ m v²
v =√ 2Emo / m
v = √ (2 928/8)
v = 15.23 m / s
The formula for both is v(t) = v0 + a*t
b) v(8) = 0 + 6m/s^2 *8s = 48 m/s
now we know the beginning (2) and end speed (14), but not the time:
c) 14 = 2 + 1.5*t => t = (14-2)/1.5 = 8 seconds
Answer:
His gravitational potential energy will increase as well.
Explanation:
Let gpe represent gravitational potential energy.
gpe = mass × gravitational field strength × height
From the formula above, we can conclude that as the mass of a body increases, it's gpe increases too.
Vapor pressure<span> or equilibrium </span>vapor pressure<span> is defined as the </span>pressure<span> exerted by a </span>vapor<span> in thermodynamic equilibrium with its condensed phases at a certain temperature. It is independent with atmospheric pressure since it does not change by changing the atmospheric pressure only. </span>
Plants and animals need nitrogen in order to make proteins. Proteins are essential compounds for healthy growth and fully functioning organisms.