Answer:
1.08x10⁻⁷
Explanation:
F=(GM₁M₂)/r²
=((6.67x10⁻¹¹)(70)(52))/(1.5²)
=2.42788x10⁻⁷/2.25
=1.07905778x10⁻⁷
≈1.08x10⁻⁷
(a)
KE = m v^2 / 2 = (1200 kg)(20 m/s)^2 / 2 = 240,000 J
(b)
The energy is entirely dissipated by the force of friction in the brake system.
(c)
W = delta KE = KEf - KEi = (0 - 240,000) J = -240,000 J
(d)
Fd = delta KE
F = (delta KE) / d = (-240,000 J) / (50 m) = -4800 N
The magnitude of the friction force is 4800 N.
Answer:Broadly speaking, all energy in the universe can be categorized as either potential energy or kinetic energy. Potential energy is the energy associated with position, like a ball held up in the air. When you let go of that ball and let it fall, the potential energy converts into kinetic energy, or the energy associated with motion.
EXAMPLES: There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let's explore several kinetic energy examples to better illustrate these various forms.
Answer:
Option C. is correct
Explanation:
The magnetic field is the area around a magnet in which there is magnetic force. When an electric current flows through a wire a magnetic field is created. A single wire does not produce a strong magnetic field. So, to increase the power of the magnetic field, increase the number of coils in the wire.
A resistance of 990ohm is increased by 10