Answer:
2.16×10⁻⁶ N
Explanation:
Applying,
F = kqq'/r² (coulomb's Law)....................... Equation 1
Where F = electrostatic force, k = coulomb's constant, q = charge on the styrofoam, q' = charge on the grain of salt, r = distance between the charges.
From the question,
Given: q = 0.002 mC = 2.0×10⁻⁶ C, q' = 0.03 nC = 3.0×10⁻¹¹ C, r = 0.5 m
Constant: k = 8.99×10⁹ Nm²/C²
Substitute these values into equation 1
F = (2.0×10⁻⁶)(3.0×10⁻¹¹)(8.99×10⁹)/0.5²
F = 2.16×10⁻⁶ N
780 seconds, or 13 minutes.
In the future, please use proper capitalization. There's a significant difference in the meaning between mV and MV. One of them indicated millivolts while the other indicates megavolts. For this problem, I'll make the following assumptions about the values presented. They are:
Total energy = 1.4x10^11 Joules (J)
Current per flash = 30 Columbs (C)
Potential difference = 30 Mega Volts (MV)
First, let's determine the power discharged by each bolt. That would be the current multiplied by the voltage, so
30 C * 30x10^6 V = 9x10^8 CV = 9x10^8 J
Now that we know how many joules are dissipated per flash, let's determine how flashes are needed.
1.4x10^11 / 9x10^8 = 1.56E+02 = 156
Since each flash takes 5 seconds, that means that it will take about 5 * 156 = 780 seconds which is about 780/60 = 13 minutes.
Generally speaking, solid turns to a liquid at it's melting point. Ice turns to water at 0 degrees Celcius. Chocolate melts at 25 degrees Celcius-Yum! Ice (solid) thaws when the temperature rises above 32 degrees Fahrenheit, becoming water (liquid). Other solids (oddly) vary. your welcome
Answer:
0
Explanation:
An object that is at rest and not moving will always have 0 momentum!
I hope this helped!