The rounding up of the aforementioned number to four significant figures is as follows: 3.002 × 10²
<h3>What are significant figures?</h3>
Significant figures are figures that contribute to the general and overall value of the whole number.
Significant figures or digits are specifically meaningful with respect to the precision of a measurement.
Although, the original number given in this question has 9 significant figures, the number; 300.235800 can be rounded up to four significant figures as follows:
- Decimal notation: 300.2
- No. of significant figures: 4
- No. of decimals: 1
- Scientific notation: 3.002 × 10²
Therefore, the rounding up of the aforementioned number to four significant figures is as follows: 3.002 × 10².
Learn more about significant figures at: brainly.com/question/14359464
#SPJ1
Answer: The mass percent of hydrogen in ascorbic acid is 4.5 %
Explanation:
In
, there are 6 carbon atoms, 8 hydrogen atoms and 6 oxygen atoms.
To calculate the mass percent of element in a given compound, we use the formula:

Mass of hydrogen = 
Molar Mass of ascorbic acid =
Putting values in above equation, we get:

Hence, the mass percent of of hydrogen in ascorbic acid is 4.5 %.
a. Organic: C₁₀H₁₆KNO₉S₂; (CH₃)₄As₂; C₆H₁₂O₆
b. Inorganic: NaAsO₂; HSiCl₃; (BiO)₂CO₃; H₂P₂O₇; H₂O; CO₂
Compounds containing <em>both C and H</em> are organic.
Compounds that are <em>not organic</em> are inorganic.
Answer:
CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
Explanation:
To answer this question we must know Kb of CH3CH2NH2 is 5.6x10⁻⁴, and for C6H5NH2 is 4.0x10⁻¹⁰. And the CH3CH2NH3+ and C6H5NH3+ are related with these substances because are their conjugate base. That means:
pKa of CH3CH2NH3+ = CH3CH2NH2; C6H5NH3+ = C6H5NH2
Also, Kw / Kb = Ka
Thus:
pKa of CH3CH2NH3+/CH3CH2NH2 is:
Kw / kb = Ka = 1.79x10⁻¹¹
-log Ka = pKa
pKa = 10.75
pKa of C6H5NH3+/ C6H5NH2 is:
Kw / kb = Ka = 2.5x10⁻⁵
-log Ka = pKa
pKa = 4.6
That means CH3CH2NH3+/CH3CH2NH2 would have the largest pKa
First, we have to see how K2O behaves when it is dissolved in water:
K2O + H20 = 2 KOH
According to reaction K2O has base properties, so it forms a hydroxide in water.
For the reaction next relation follows:
c(KOH) : c(K2O) = 1 : 2
So,
c(KOH)= 2 x c(K2O)= 2 x 0.005 = 0.01 M = c(OH⁻)
Now we can calculate pH:
pOH= -log c(OH⁻) = -log 0.01 = 2
pH= 14-2 = 12