1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
3 years ago
10

The redshift of the galaxies is correctly interpreted as

Physics
2 answers:
pickupchik [31]3 years ago
5 0
Doppler shift due to random motion of galaxies ,an aging of light as gravity weakens with time ,the difference in temperature and star formation in old and new galaxies
DerKrebs [107]3 years ago
5 0

It's simply showing red-shift on a big, big stage. The Big Bang explosion was so massive that most things we can see in the universe are still moving away from us. Some things nearby -- planets or stars -- are moving closer. So, cosmological red-shift means that light stretches as space expands. This is one of the defining proofs for the The Big Bang Theory as well as that the Universe is expanding.

You might be interested in
Which is a factor that affects size of mineral crystals formed in magma
Natali5045456 [20]
The volcanic ashes from the volcano
6 0
2 years ago
For a caffeinated drink with a caffeine mass percent of 0.65% and a density of 1.00 g/mL, how many mL of the drink would be requ
slava [35]

Explanation:

First we will convert the given mass from lb to kg as follows.

        157 lb = 157 lb \times \frac{1 kg}{2.2046 lb}

                   = 71.215 kg

Now, mass of caffeine required for a person of that mass at the LD50 is as follows.

         180 \frac{mg}{kg} \times 71.215 kg

         = 12818.7 mg

Convert the % of (w/w) into % (w/v) as follows.

      0.65% (w/w) = \frac{0.65 g}{100 g}

                           = \frac{0.65 g}{(\frac{100 g}{1.0 g/ml})}

                           = \frac{0.65 g}{100 ml}

Therefore, calculate the volume which contains the amount of caffeine as follows.

   12818.7 mg = 12.8187 g = \frac{12.8187 g}{\frac{0.65 g}{100 ml}}

                       = 1972 ml

Thus, we can conclude that 1972 ml of the drink would be required to reach an LD50 of 180 mg/kg body mass if the person weighed 157 lb.

5 0
3 years ago
A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.90 m/s2
Ahat [919]

Answer:

Approximately 0.608 (assuming that g = 9.81\; \rm N\cdot kg^{-1}.)

Explanation:

The question provided very little information about this motion. Therefore, replace these quantities with letters. These unknown quantities should not appear in the conclusion if this question is actually solvable.

  • Let m represent the mass of this car.
  • Let r represent the radius of the circular track.

This answer will approach this question in two steps:

  • Step one: determine the centripetal force when the car is about to skid.
  • Step two: calculate the coefficient of static friction.

For simplicity, let a_{T} represent the tangential acceleration (1.90\; \rm m \cdot s^{-2}) of this car.

<h3>Centripetal Force when the car is about to skid</h3>

The question gave no information about the distance that the car has travelled before it skidded. However, information about the angular displacement is indeed available: the car travelled (without skidding) one-quarter of a circle, which corresponds to 90^\circ or \displaystyle \frac{\pi}{2} radians.

The angular acceleration of this car can be found as \displaystyle \alpha = \frac{a_{T}}{r}. (a_T is the tangential acceleration of the car, and r is the radius of this circular track.)

Consider the SUVAT equation that relates initial and final (tangential) velocity (u and v) to (tangential) acceleration a_{T} and displacement x:

v^2 - u^2 = 2\, a_{T}\cdot x.

The idea is to solve for the final angular velocity using the angular analogy of that equation:

\left(\omega(\text{final})\right)^2 - \left(\omega(\text{initial})\right)^2 = 2\, \alpha\, \theta.

In this equation, \theta represents angular displacement. For this motion in particular:

  • \omega(\text{initial}) = 0 since the car was initially not moving.
  • \theta = \displaystyle \frac{\pi}{2} since the car travelled one-quarter of the circle.

Solve this equation for \omega(\text{final}) in terms of a_T and r:

\begin{aligned}\omega(\text{final}) &= \sqrt{2\cdot \frac{a_T}{r} \cdot \frac{\pi}{2}} = \sqrt{\frac{\pi\, a_T}{r}}\end{aligned}.

Let m represent the mass of this car. The centripetal force at this moment would be:

\begin{aligned}F_C &= m\, \omega^2\, r \\ &=m\cdot \left(\frac{\pi\, a_T}{r}\right)\cdot r = \pi\, m\, a_T\end{aligned}.

<h3>Coefficient of static friction between the car and the track</h3>

Since the track is flat (not banked,) the only force on the car in the horizontal direction would be the static friction between the tires and the track. Also, the size of the normal force on the car should be equal to its weight, m\, g.

Note that even if the size of the normal force does not change, the size of the static friction between the surfaces can vary. However, when the car is just about to skid, the centripetal force at that very moment should be equal to the maximum static friction between these surfaces. It is the largest-possible static friction that depends on the coefficient of static friction.

Let \mu_s denote the coefficient of static friction. The size of the largest-possible static friction between the car and the track would be:

F(\text{static, max}) = \mu_s\, N = \mu_s\, m\, g.

The size of this force should be equal to that of the centripetal force when the car is about to skid:

\mu_s\, m\, g = \pi\, m\, a_{T}.

Solve this equation for \mu_s:

\mu_s = \displaystyle \frac{\pi\, a_T}{g}.

Indeed, the expression for \mu_s does not include any unknown letter. Let g = 9.81\; \rm N\cdot kg^{-1}. Evaluate this expression for a_T = 1.90\;\rm m \cdot s^{-2}:

\mu_s = \displaystyle \frac{\pi\, a_T}{g} \approx 0.608.

(Three significant figures.)

7 0
3 years ago
Put the following words in order from smallest to largest: atoms, matter, elements
WINSTONCH [101]

Answer:

Matter, atoms, elements.

Explanation:

Matter is just a name for anything that has mass and takes up space. Therefore, atoms are larger than matter. Atoms are the smallest bits of an element that <em>are</em><em> </em><em>still</em><em> </em><em>that</em><em> </em><em>element</em>, so, elements would be bigger than the atoms that come together to create them!

Hope this helps!

6 0
2 years ago
A 2 kg rock is at the edge of a cliff 20 meters above a lake The rock becomes loose and falls toward the water below. Calculate
natima [27]

Answer:

The potential energy (P.E) at the top is 392 J

The kinetic energy (K.E) at the top is 0 J

The potential energy (P.E) at the halfway point is 196 J.

The kinetic energy (K.E) at the halfway point is 196 J.

Explanation:

Given;

mass of the rock, m = 2 kg

height of the cliff, h = 20 m

speed of the rock at the halfway point, v = 14 m/s

The potential energy (P.E) and kinetic energy (K.E) when its at the top;

P.E = mgh

P.E = (2)(9.8)(20)

P.E= 392 J

K.E = ¹/₂mv²

where;

v is velocity of the rock at the top of the cliff = 0

K.E = ¹/₂(2)(0)²

K.E = 0

The potential energy (P.E) and kinetic energy (K.E) at the halfway point;

P.E = mg(¹/₂h)

P.E = (2)(9.8)(¹/₂ x 20)

P.E = 196 J

K.E = ¹/₂mv²

where;

v is velocity of the rock at the halfway point = 14 m/s

K.E = ¹/₂(2)(14)²

K.E = 196 J.

4 0
2 years ago
Other questions:
  • A motorist driving at 25 meters/second decelerates to
    11·2 answers
  • If you drop a ball off a cliff, it starts out a 0 m/s. After 1 s, it will be traveling at about 10 m/s. If air resistance is rem
    10·2 answers
  • How do the weights of the tug of war teams affect the match
    6·2 answers
  • Explain why a cow that touches an electric fence experiences a mild shock
    10·1 answer
  • a man exerts 3000.00N of force to push a car 35.00 meters in 90.00 seconds.... 1. what is the work done 2.what is the power gene
    7·1 answer
  • A weight suspended from a spring is seen to bob up and down over a total distance of 20 centimeters twice each second.
    5·1 answer
  • A proton with an initial speed of 600,000 m/s is brought to rest by an electric field. Part A Part complete Did the proton move
    8·1 answer
  • I REALLY NEED HELP!!!!
    11·1 answer
  • If the mass of a 1.8 g paperclip was able to be completely converted to energy, how much energy would you obtain?
    5·1 answer
  • An object moving in the xy-plane is subjected to the force f⃗ =(2xyı^ 3yȷ^)n, where x and y are in m
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!