Explanation:
Given that,
Initial velocity, u = 11.3 m/s
Angle above the horizontal, 
Time of flight :

Horizontal distance traveled is given by :
x = ut
x = 11.3 m/s × 1.32 s
x = 14.916 m
Maximum height is given by :

Hence, time of flight is 1.32 s, horizontal distance is 14.916 m and maximum height is 2.14 m.
Power is the rate work done given by dividing work done by unit time. It is measured in watts equivalent to J/s.
In this case the force by the student is mg = 490 N (taking g as 9.8m/s²)
Work done is given by force × distance,
Therefore, Power =(force × distance)/ time, but velocity/speed =distance/time
Thus, Power = force × speed/velocity
= 490 N × 1.25
= 612.5 J/S (Watts)
Hence, power will be 612.5 Watts.
To solve this problem it is necessary to use the conservation equations of both kinetic, rotational and potential energy.
By definition we know that

Where,
KE =Kinetic Energy
KR = Rotational Kinetic Energy
PE = Potential Energy
In this way

Where,
m = mass
v= Velocity
I = Moment of Inertia
Angular velocity
g = Gravity
h = Height
We know as well that
for velocity (v) and Radius (r)
Therefore replacing we have

[/tex]



Therefore the height must be 0.3915 for the yo-yo fall has a linear speed of 0.75m/s
Answer:
Order of 10^(-35) m.
Explanation:
The string theory is a theoretical concept whereby the very small particles of particle physics are replaced by one dimensional objects which are called strings. This theory is also applicable to black hole physics, nuclear physics, cosmology, etc.
Now, according to string theory, six space-time dimensions cannot be measured except as quantum numbers of internal particle properties because they are curled up in size of the order of 10^(-35) m.
This is because the length of the scale is assumed to be on the order of the Planck length, or 10^(−35) meters which is the scale at which the effects of quantum gravity are usually believed to become very significant.