Answer:
b) 1
Step-by-step explanation:


The distance the ships traveled are like the legs of a triangle and the question wants to know the hypotenuse. To find the hypotenuse, use the pythagorean theorem. this is a^2 + b^2 = c^2, with a and b being the legs and c being the <span>hypotenuse.
</span>Plug in known values:
84^2 + 62^2 = c^2
Solve:
84^2 = 7056
62^2 = 3844
7056 + 3844 = c^2
7056 + 3844 = 10900
10900 = c^2
Now you just need to isolate c by finding the square root of both sides.
√10900 = 104.403
√c^2 = c
So c = 104.403, or just 104.40 when rounded to the nearest tenth.
And if c is 104.40, then that means the hypotenuse is 104.40.
And all of that basically means that the distance between the ships is 104.40 miles.
Answer:
Simple Interest (I) = Principle * Rate * Time
so I = PRT
P = $47300
R = 3% = 0.03
T = 4months = 0.33years
so
Assuming its per year after 4month
I = (47300)(0.03)(0.333333)
I = 472.999527
I = $473
Now we'd add the interest(I) to the Principle
$47300 + $473 = $47773.00
Assuming it is per month, after 4months
I = PRT
I = (47300)(0.03)(4)
I = $5676.00
Now add the interest to the principle
$47300 + $5676 = $52976.00
Step-by-step explanation:
there you go hope this help
Answer:
Height of the streetlight ≈ 8 ft(nearest foot)
Step-by-step explanation:
The doc file displays the triangle formed from the illustration. x is the height of the street light. The distance from the gentle man to the street light is 10 ft. He has a height of 5.6 ft and the shadow formed on the ground is 24 ft long. The height of the street light can be calculated below.
The length of the tip of the shadow to the base of the street light is 34 ft. Similar triangle have equal ratio of their corresponding sides .
ab = 5.6 ft
The ratio of the base sides = 24/34
The ratio of the heights = 5.6/x
The two ratio are equal Therefore,
24/34 = 5.6/x
24x = 5.6 × 34
24x = 190.4
divide both side by 24
x = 190.4/24
x = 7.93333333333
x ≈ 8 ft
Height of the streetlight ≈ 8 ft(nearest foot)
Answer:
thx
Step-by-step explanation: