Answer:
First option: cos(θ + φ) = -117/125
Step-by-step explanation:
Recall that cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
If sin(θ) = -3/5 in Quadrant III, then cos(θ) = -4/5.
Since tan(φ) = sin(φ)/cos(φ), then sin(φ) = -7/25 and cos(φ) = 24/25 in Quadrant II.
Therefore:
cos(θ + φ) = cos(θ)cos(φ) - sin(θ)sin(φ)
cos(θ + φ) = (-4/5)(24/25) - (-3/5)(-7/25)
cos(θ + φ) = (-96/125) - (21/125)
cos(θ + φ) = -96/125 - 21/125
cos(θ + φ) = -117/125
Answer:
B. (8, 4)
Step-by-step explanation:
Hope this helps!
Answer:
(14 - x) + (4·x - 22) = 3·x - 8
Answer:
∠L = 43°
∠M = 121°
∠N = 16°
Step-by-step explanation:
<u>Start by setting all sides equal to 180</u>
3x - 5 + 7x + 9 + x = 180
<u>Add like terms</u>
11x + 4 = 180
<u>Solve for x</u>
11x + 4 = 180
- 4 - 4
11x = 176
/ 11 /11
x = 16
<u>Now, plug in 16 for all instances of x on the triangle and solve.</u>
∠L = 43°
∠M = 121°
∠N = 16°