Answer:
Experimental group
Explanation:
i hopes this helps let me know if im wrong:)
Answer:
66m
Explanation:
To get the area of something you multiple the length (5.5) by the width (12) together. So the problem would look like 5.5×12 and if you multipe that you get 66
Answer:
C) In[reactant] vs. time
Explanation:
For a first order reaction the integrated rate law equation is:

where A(0) = initial concentration of the reactant
A = concentration after time 't'
k = rate constant
Taking ln on both sides gives:
![ln[A] = ln[A]_{0}-kt](https://tex.z-dn.net/?f=ln%5BA%5D%20%3D%20ln%5BA%5D_%7B0%7D-kt)
Therefore a plot of ln[A] vs t should give a straight line with a slope = -k
Hence, ln[reactant] vs time should be plotted for a first order reaction.
Answer:
False
Explanation:
The primary structure of a protein refer to the amino acid sequence. The secondary structure of a protein refer to the alpha helices, beta sheets and turns, while the tertiary structure refer to folding of the sheets due to hydrogen bonding or other bonding interaction between them.
Answer:
0.106 mol (3s.f.)
Explanation:
To find the number of moles, divide the mass of glucose (in grams) by its Mr. Glucose has a chemical formula of C6H12O6. To find the Mr, add all the Ar of all the atoms in C6H12O6.
Ar of C= 12, Ar of H= 1, Mr of O= 16
These Ar values can be found on the periodic table.
Mr of glucose= 6(12)+ 12(1) + 6(16)= 180
Moles of glucose
= mass ÷ mr
= 19.1 ÷ 180
= 0.106 mol (3 s.f.)