Part (a) :
H₂(g) + I₂(s) → 2 HI(g)
From given table:
G HI = + 1.3 kJ/mol
G H₂ = 0
G I₂ = 0
ΔG = G(products) - G(reactants) = 2 (1.3) = 2.6 kJ/mol
Part (b):
MnO₂(s) + 2 CO(g) → Mn(s) + 2 CO₂(g)
G MnO₂ = - 465.2
G CO = -137.16
G CO₂ = - 394.39
G Mn = 0
ΔG = G(products) - G(reactants) = (1(0) + 2*-394.39) - (-465.2 + 2*-137.16) = - 49.3 kJ/mol
Part (c):
NH₄Cl(s) → NH₃(g) + HCl(g)
ΔG = ΔH - T ΔS
ΔG = (H(products) - H(reactants)) - 298 * (S(products) - S(reactants))
= (-92.31 - 45.94) - (-314.4) - (298 k) * (192.3 + 186.8 - 94.6) J/K
= 176.15 kJ - 84.78 kJ = 91.38 kJ
Jinx kxknxbxbxbjxj dbdbcj
Answer:
Josh is running at a speed of 9.09 yards per second.
Josh's velocity is 9.09 East.
Josh's force is 900 N.
Aaron Donald's force is 845 N.
Yes Josh scores the touchdown because he is faster and has more mass than Donald.
Explanation:
Josh scores the touchdown as he is heavier and faster than Donald.
Formulas are:
Force= mass x acceleration
Speed= distance divided by time.
Velocity= distance divided by time.
The first bond between two atoms is always a sigma bond and the other bonds are always pi bonds and a hybridized orbital cannot be involved in a pi bond. Thus we need to leave one electron (in case of Carbon double bond) to let the Carbon have the second bond as a pi bond.
The effect of an insoluble impurity, such as sand, on the observed melting point of a compound would be none. It will not depress or elevate the melting point of the compound. Instead, it would affect the reading if you are trying to determine the melting point of the compound. This is because you might be missing the actual melting point of the compound since you will be waiting for the whole sample to liquify. You would not be able to determine exactly that temperature because of the insoluble impurity would have a different melting point than that of the compound.