Answer:
Mass = 2.77 g
Explanation:
Given data:
Mass of HCl = 2 g
Mass of CaCl₂ produced = ?
Solution:
Chemical equation:
2HCl + Ca → CaCl₂ + H₂
Number of moles of HCl:
Number of moles = mass / molar mass
Number of moles = 2 g/ 36.5 g/mol
Number of moles = 0.05 mol
now we will compare the moles of HCl with CaCl₂.
HCl : CaCl₂
2 : 1
0.05 : 1/2×0.05 = 0.025 mol
Mass of CaCl₂:
Mass = number of moles × molar mass
Mass = 0.025 mol × 110.98 g/mol
Mass = 2.77 g
Explanation:
molarity = no. of moles of solute/solution in litres
molarity =0.202/7.98
=0.025 M
Answer : The equilibrium concentration of
in the solution is, 
Explanation :
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-x x x
Given:
c = 

The expression of dissociation constant of acid is:
![K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_6H_5COO%5E-%5D%7D%7B%5BC_6H_5COOH%5D%7D)

Now put all the given values in this expression, we get:
![6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}](https://tex.z-dn.net/?f=6.3%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%28x%29%5Ctimes%20%28x%29%7D%7B%5B%287.0%5Ctimes%2010%5E%7B-2%7D%29-x%5D%7D)

Thus, the equilibrium concentration of
in the solution is, 
Answer is: the ratio of the effusion rate is 1.59 : 1.
1) rate of effusion of carbon monoxide gas = 1/√M(CO).
rate of effusion of carbon monoxide gas = 1/√28.
rate of effusion of carbon monoxide gas = 0.189.
2) rate of effusion of chlorine = 1/√M(Cl₂).
rate of effusion of chlorine = 1/√70.9.
rate of effusion of chlorine = 0.119.
rate of effusion of carbon monoxide : rate of effusion of chlorine =
= 0.189 : 0.119 / ÷0.119.
rate of effusion of carbon monoxide : rate of effusion of chlorine = 1.59 : 1.