I am pretty sure it’s y=1
The correct value of the length of each square tile is 3½ feet long.
Answer:
Total area of mosaic = 600.25 sq.ft
Step-by-step explanation:
We are told the length of each square tile = 3½ ft.
Area of square = L²
Where L is length of side.
Thus;
Area = 3½ × 3½
Area = 49/4 sq.ft
Now, an array of 7 x 7 means 7 rows and 7 columns
Thus, total number of square tiles = 7 x 7 = 49 tiles
So,
total area of whole mosaic = number of tiles × Area of 1 tile
Total area = 49 × 49/4 = 600.25 sq.ft
Answer:
∫∫∫1 dV=4\sqrt{3}π
Step-by-step explanation:
From Exercise we have
z=6-x^{2}-y^{2}
z=x^{2}+y^{2}
we get
2z=6
z=3
x^{2}+y^{2}=3
We use the polar coordinates, we get
x=r cosθ
y=r sinθ
x^{2}+y^{2}&=r^{2}
r^{2}=3
We get at the limits of the variables that well need for our integral
x^{2}+y^{2}≤z≤3
0≤r ≤\sqrt{3}
0≤θ≤2π
Therefore, we get a triple integral
\int \int \int 1\, dV&=\int \int \left(\int_{x^2+y^2}^{3} 1\, dz\right) dA
=\int \int \left(z|_{x^2+y^2}^{3} \right) dA
=\int \int\ \left(3-(x^2+y^2) \right) dA
=\int \int\ \left(3-r^2 \right) dA
=\int_{0}^{2\pi}\int_{0}^{\sqrt{3}} (3-r^2) dr dθ
=3\int_{0}^{2\pi}\int_{0}^{\sqrt{3}} 1 dr dθ-\int_{0}^{2\pi}\int_{0}^{\sqrt{3}} r^2 dr dθ
=3\int_{0}^{2\pi} r|_{0}^{\sqrt{3}} dθ-\int_{0}^{2\pi} \frac{r^3}{3}|_{0}^{\sqrt{3}}dθ
=3\sqrt{3}\int_{0}^{2\pi} 1 dθ-\sqrt{3}\int_{0}^{2\pi} 1 dθ
=3\sqrt{3} ·2π-\sqrt{3}·2π
=4\sqrt{3}π
We get
∫∫∫1 dV=4\sqrt{3}π