Answer:
Solution : (15, - 11)
Step-by-step explanation:
We want to solve this problem using a matrix, so it would be wise to apply Gaussian elimination. Doing so we can start by writing out the matrix of the coefficients, and the solutions ( - 5 and - 2 ) --- ( 1 )

Now let's begin by canceling the leading coefficient in each row, reaching row echelon form, as we desire --- ( 2 )
Row Echelon Form :

Step # 1 : Swap the first and second matrix rows,

Step # 2 : Cancel leading coefficient in row 2 through
,

Now we can continue canceling the leading coefficient in each row, and finally reach the following matrix.

As you can see our solution is x = 15, y = - 11 or (15, - 11).
Answer:
P(O and O) =0.1296
P=0.3778
Step-by-step explanation:
Given that
blood phenotypes in a particular population
A=0.48
B=0.13
AB=0.03
O=0.36
As we know that when A and B both are independent that
P(A and B)= P(A) X P(B)
The probability that both phenotypes O are in independent:
P(O and O)= P(O) X P(O)
P(O and O)= 0.36 X 0.36 =0.1296
P(O and O) =0.1296
The probability that the phenotypes of two randomly selected individuals match:
Here four case are possible
So
P=P(A and A)+P(B and B)+P(AB and AB)+P(O and O)
P=0.48 x 0.48 + 0.13 x 0.13 + 0.03 x 0.03 + 0.36 x 0.36
P=0.3778
Step-by-step answer:
Given an enlargement from preimage (ABC) to image (A'B'C').
Need to find scale factor.
Solution:
Scale factor = linear size of image / linear size of preimage.
From the accompanying diagram, we see that
L(preimage) = AC = 4 units
L(image) = A'C' = 12 units
Therefore
Scale factor = L(image) / L(preimage) = 12 / 4 = 3
Answer: x = 13.5
3/4 = x/18
⇔ x = 3/4 .18 = 27/2 = 13.5
Step-by-step explanation: