Sin ø = opposite/hypotenuse = 2/3, cos ø = adjacent/hypotenuse = ?/3, tan ø = opposite/adjacent = 2/?, sec ø = 1/cos ø
to solve ?, Pythagorean theorem must be applied
hypotenuse^2 = adjacent^2 + opposite^2
Manipulating the equation to find the adjacent value = ?
adjacent = sqrt(hypotenuse^2 - opposite^2) = sqrt(9-4)
adjacent = sqrt(5)
so cos ø = sqrt(5)/3, tan ø = 2/sqrt(5) and sec <span>ø = 3/sqrt(5) since the value is positive the possible equivalent trigonometric function should be positive, the answer should be b </span>
If the price is marked down 24%, that means it is 100-24 = 76% of the original. So we know that $364 is 76% of the original price. x * 0.76 = 364, x = 364/0.76 = $478.95. Make sense?
Answer:
<em>Option D: 159 3/8 cm^3 </em>
Step-by-step explanation:
1. Let us rewrite the dimensions, and the options to make this a little more clear ~ (dimensions) 5 cm, 8 1/2 cm, 3 3/4 cm ⇒ (options) 17 1/4 cm^3, 18 3/4 cm^3, 27 1/4 cm^3, and 159 3/8 cm^3
2. To find the volume of most 3-dimensional figures, you would have to multiply the Base * height, so for a rectagular prism ⇒ <em>Base * height = length * width * height</em>
3. Substitute and compute the volume through algebra:
5 cm * 8 1/2 cm * 3 3/4 cm =
5 cm * 17/2 cm * 15/4 cm =
85/2 cm^2 * 15/4 cm =
1275/8 cm^3 =
<em>159 3/8 cm^3</em>
4. This means that the<em> Volume of the Rectangular Prism = 159 3/8 cm^3 (Option D)</em>
Answer:
It is given that ABCD is a parallelogram, so AB || DC by the difinition of parallelogram. So, <1 = <2 by the alternate interior angles theorem. It is also given that DC bisects <BDE, so <2 = <em><u><</u><u>3</u><u> </u></em> by the <em><u>d</u><u>e</u><u>f</u><u>i</u><u>n</u><u>i</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>o</u><u>f</u><u> </u><u>a</u><u>n</u><u>g</u><u>l</u><u>e</u><u> </u><u>b</u><u>i</u><u>s</u><u>e</u><u>c</u><u>t</u><u>o</u><u>r</u><u>.</u></em> Therefore,<em> <u><</u><u>1</u></em><u> </u> = <3 by the <em><u>t</u><u>r</u><u>a</u><u>n</u><u>s</u><u>i</u><u>t</u><u>i</u><u>v</u><u>e</u><u> </u><u>p</u><u>r</u><u>o</u><u>p</u><u>e</u><u>r</u><u>t</u><u>y</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>n</u><u>g</u><u>r</u><u>u</u><u>e</u><u>n</u><u>c</u><u>e</u><u>.</u></em>