Answer:
v = 15.8 m/s
Explanation:
Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement. So the variation of mechanical energy is equal to the work of the fictional force
= ΔEm =
-Em₀
Let's write the mechanical energy at each point
Initial
Em₀ = Ke = ½ k x²
Final
= K + U = ½ m v² + mg y
Let's use Hooke's law to find compression
F = - k x
x = -F / k
x = 4400/1100
x = - 4 m
Let's write the energy equation
fr d = ½ m v² + mgy - ½ k x²
Let's clear the speed
v² = (fr d + ½ kx² - mg y) 2 / m
v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50) 2/60.0
v² = (160 + 8800 - 1470) / 30
v = √ (229.66)
v = 15.8 m/s
Answer = 330 m/s
The wave equation is as follows:
Wave speed = wavelength x frequency
The known values are:
Wavelength = 3m
Frequency = 110 Hz
Substitute the known values into the wave equation to find the wave speed.
Wave speed = 3 x 110
Wave speed = 330 m/s
Answer: Mercury, Mars, Venus, Earth, Neptune, Uranus, Saturn, and Jupiter.
Explanation:
That's all of the planets if you need them. Hope this helps!
This being a perfect collision means no energy is lost during the collision. Because this question asks for speed and not velocity, the speed will be the same because the final energy is the same. The speed after the collision would therefore be 1.27 m/s.