Answer: 54.55 m/s
Explanation:
Distance = 300 m
Time = 5.5 s
Average Speed = Total Distance/Total Time
= 300/5.5
= <u>54.55 m/s</u>
Hope this helped..
Answer:
0.3376 mm
Explanation:
The computation of the spacing in mm between the slits is shown below:
As we know that

where,
= wavelength
L = distance from the scrren
= spanning distance
As there are 11 bright fingers seen so m would be
= 11 - 1
= 10
Now placing these values to the above formula
So, the spacing is

= 0.3376 mm
We simply applied the above formula.
Answer: 1.3 *10^6 Ω*m
Explanation: In order to explain this problem we have to use the following expression for the resistence:
R=L/(σ*A) where L and A are the length and teh area for the wire, respectively. σ is the conductivity of teh Nichrome.
Then, from mteh OHM law we have V=R*I so R=V/I=2/3.2=0.625 Ω
Finally we have:
σ=L/(R*A)=1.3/(0.625*1.6*10^-6)=1.3*10^6 Ω*m
Answer:
Knowing that these metals are infact good conductors of electricity we can infer that metals are able to hold and conduct certain temperatures. Another thing we can infer is that these good conductors can be used in connection to transferring energy or electricity.
Answer:
c. Solar eclipses would be much more frequent.
Explanation:
The <u>ecliptic plane</u> is the apparent orbit that the sun describes around the earth (although it is the earth that orbits the sun), is the path the sun follows in earth's sky.
A <u>solar eclipse</u> occurs when the moon gets between the earth and the sun, so a shadow is cast on the earth because the light from the sun is blocked.
The reason why solar eclipses are not very frequent is because the moon's orbital plane is not in the same plane as the orbit of the earth around the sun, but rather that it is somewhat inclined with respect to it.
So <u>if both orbits were aligned, the moon would interpose between the sun and the earth more frequently, producing more solar eclipses.</u>
So, if the moon's orbital plane were exacly the same as the ecliptic plane solar eclipses would be more frequent.
the answer is: c.