Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v =
let's calculate
v =
v =
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C
Answer:
kg
Explanation:
easy question to be honest
Answer:
Final velocity, V = 11.5m/s
Explanation:
Given the following data;
Initial velocity, U = 2.5m/s
Acceleration, a = 1.5m/s²
Time, t = 6secs
To find the final velocity, we would use the first equation of motion
V = U + at
Substituting into the equation, we have
V = 2.5 + 1.5*6
V = 2.5 + 9
Final velocity, V = 11.5m/s
Answer:
Seriously I have no idea. I need help with my homework.
Explanation:
I really need help with my homework. Sorry
because the building are weaker and they are most likley to fall