1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
3 years ago
9

Considerando que você comece a caminhar em velocidade constante, inicialmente a 350 m de um ponto referencial escolhido. Você ca

minha a 1 m/s no sentido de encontro desse referencial. Podemos dizer que a Equação Horária desse MRU e o tipo de movimento são, respecitvamente:
Escolha uma:

a. S(t)=350−1t, movimento retrógrado


b. S(t)=350−1t, movimento progressivo.


c. S(t)=350+1t, movimento progressivo


d. S(t)=−350+t, movimento progressivo.


e. S(t)=350+1t, movimento retrógrado.
Physics
1 answer:
ExtremeBDS [4]3 years ago
4 0

Answer:

a. S(t)=350−1t

Explanation:

To determine the equation of motion you take into account the general form of motion with constant velocity:

S(t)=S_o+vt    ( 1 )

So is the initial position from a specific reference frame. In this case is 350 m.

v is the speed of the motion, in this case is 1m/s. However, the motion is forward the zero point of the reference frame, hence, the speed is - 1m/s.

You replace the values of So and v in the equation ( 1 ) and you obtain:

S(t)=350-(1m/s)t

Hence, the answer is:

a. S(t)=350−1t

- - - - - - - - - - - - - - - - - - - - -

Para determinar a equação do movimento, você leva em consideração a forma geral do movimento com velocidade constante:

             (1)

Assim é a posição inicial de um quadro de referência específico. Neste caso, é de 350 m.

v é a velocidade do movimento, neste caso é de 1m / s. No entanto, o movimento é avançar o ponto zero do quadro de referência, portanto, a velocidade é de - 1m / s.

Você substitui os valores de So ev na equação (1) e obtém:

Portanto, a resposta é:

uma. S (t) = 350-1t, movimento retrógrado

You might be interested in
Three cars (car F, car G, and car H) are moving with the same speed and slam on their brakes. The most massive car is car F, and
Crazy boy [7]

To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.

From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

v_f^2=v_i^2+2ax

Where,

v_f = Final velocity

v_i = Initial Velocity

a = Acceleration

x = Displacement

Acceleration can be expressed in terms of the drag coefficient by means of

F_f = \mu_k (mg)  \rightarrowFrictional Force

F = ma \rightarrow Force by Newton's second Law

Where,

m = mass

a= acceleration

\mu_k = Kinetic frictional coefficient

g = Gravity

Equating both equation we have that

F_f = F

\mu_k mg=ma

a = \mu_k g

Therefore,

v_f^2=v_i^2+2ax

0=v_i^2+2(\mu_k g)x

Re-arrange to find x,

x = \frac{v_i^2}{2(-\mu_k g)}

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.

3 0
3 years ago
To get a feeling for inertial forces discuss the familiar cases of accelerating in a car in a straight line while increasing or
inn [45]

Answer:

Explanation:

When we accelerate in a car on a straight path we tend to lean backward because our lower body part which is directly in contact with the seat of the car gets accelerated along with it but the upper the upper body experiences this force  later on due to its own inertia. This force is accordance with Newton's second law of motion and is proportional to the rate of change of momentum of the upper body part.

Conversely we lean forward while the speed decreases and the same phenomenon happens in the opposite direction.

While changing direction in car the upper body remains in its position due to inertia but the lower body being firmly in contact with the car gets along in the direction of the car, seems that it makes the upper body lean in the opposite direction of the turn.

On abrupt change in the state of motion the force experienced is also intense in accordance with the Newton's second law of motion.

7 0
3 years ago
The velocity of the transverse waves produced by an earthquake is 8.9 km/s, and that of the longitudinal waves is 5.1 km/s. A se
Brrunno [24]

Answer: The distance is 723.4km

Explanation:

The velocity of the transverse waves is 8.9km/s

The velocity of the longitudinal wave is 5.1 km/s

The transverse one reaches 68 seconds before the longitudinal.

if the distance is X, we know that:

X/(9.8km/s) = T1

X/(5.1km/s) = T2

T2 = T1 + 68s

Where T1 and T2 are the time that each wave needs to reach the sesmograph.

We replace the third equation into the second and get:

X/(9.8km/s) = T1

X/(5.1km/s) = T1 + 68s

Now, we can replace T1 from the first equation into the second one:

X/(5.1km/s) = X/(9.8km/s) + 68s

Now we can solve it for X and find the distance.

X/(5.1km/s) - X/(9.8km/s) = 68s

X(1/(5.1km/s) - 1/(9.8km/s)) = X*0.094s/km= 68s

X = 68s/0.094s/km = 723.4 km

6 0
3 years ago
PLEASE HELPPPPPPPP
LUCKY_DIMON [66]
I think this is AWESOME, but I think the last sentence of your conclusion is a bit off. <span> "If someone has an allergy to oil then they can still eat cake because applesauce makes an amazing substitute for oil." I think that you should say "This recipe is great for those who cannot eat/drink oil, the applesauce is an amazing substitute for oil."

I hope I helped! -Wajiha</span>
8 0
3 years ago
A student carried out an experiment adding different weights to a spring and recording the results. Look at the table of results
MAXImum [283]

Answer:

0.25 m.

Explanation:

We'll begin by calculating the spring constant of the spring.

From the diagram, we shall used any of the weight with the corresponding extention to determine the spring constant. This is illustrated below:

Force (F) = 0.1 N

Extention (e) = 0.125 m

Spring constant (K) =?

F = Ke

0.1 = K x 0.125

Divide both side by 0.125

K = 0.1/0.125

K = 0.8 N/m

Therefore, the force constant, K of spring is 0.8 N/m

Now, we can obtain the number in gap 1 in the diagram above as follow:

Force (F) = 0.2 N

Spring constant (K) = 0.8 N/m

Extention (e) =..?

F = Ke

0.2 = 0.8 x e

Divide both side by 0.8

e = 0.2/0.8

e = 0.25 m

Therefore, the number that will complete gap 1is 0.25 m.

5 0
3 years ago
Other questions:
  • A car has a unibody-type frame and is supported by four suspension springs, each with a force constant of 29600 n/m. the combine
    6·1 answer
  • With that push, they have accelerated their masses, which means they have _____ of their bodies.
    15·1 answer
  • The smallest unit of an element that has all of the properties of the element is a/an
    10·1 answer
  • What causes the pressure that allows diamonds to form in the mantle?
    14·1 answer
  • Define the focus of a concave lens ​
    10·1 answer
  • The speed of a car decreases uniformly as it passes a curve point where normal component of acceleration is 4 ft/sec2. If the ca
    11·1 answer
  • Hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineeeedhelp
    11·1 answer
  • The Sun is divided into three regions.<br> True оr False?
    10·2 answers
  • What are some common positive and negative attitudes toward physical activities? What
    11·1 answer
  • Need help with the following - question 2
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!