Answer:
I'm alright................
Answer:
a) ΔL/L = F / (E A), b)
= L (1 + L F /(EA) )
Explanation:
Let's write the formula for Young's module
E = P / (ΔL / L)
Let's rewrite the formula, to have the pressure alone
P = E ΔL / L
The pressure is defined as
P = F / A
Let's replace
F / A = E ΔL / L
F = E A ΔL / L
ΔL / L = F / (E A)
b) To calculate the elongation we must have the variation of the length, so the length of the bar must be a fact. Let's clear
ΔL = L [F / EA]
-L = L (F / EA)
= L + L (F / EA)
= L (1 + L (F / EA))
Since the stone is travelling, the displacement cannot be constant. This leaves the last 2 choices as possibilities. Now consider the acceleration that can act on the stone. Acceleration due to gravity is the only one. That means the horizontal component of the stone has to be constant since there is no acceleration in the horizontal direction.
Answer:
a)T total = 2*Voy/(g*sin( α ))
b)α = 0º , T total≅∞ (the particle, goes away horizontally indefinitely)
α = 90º, T total=2*Voy/g
Explanation:
Voy=Vo*sinα
- Time to reach the maximal height :
Kinematics equation: Vfy=Voy-at
a=g*sinα ; g is gravity
if Vfy=0 ⇒ t=T ; time to reach the maximal height
so:
0=Voy-g*sin( α )*T
T=Voy/(g*sin( α ))
- Time required to return to the starting point:
After the object reaches its maximum height, the object descends to the starting point, the time it descends is the same as the time it rises.
So T total= 2T = 2*Voy/(g*sin( α ))
The particle goes totally horizontal, goes away indefinitely
T total= 2*Voy/(g*sin( α )) ≅∞
T total=2*Voy/g
Hello!
===
When objects are heated, their molecules tend to vibrate fast. As they vibrate, the space between each atom increases. This keeps on happening, and the object expands until it has cooled down.
===
Hope this helps! :)