4x + 2y = 8 (1)
8x + 4y = -4y (2)
A) Two lines are parallel if they have the same gradient
- putting both equations into the gradient- intercept form ( y = mx + c where m is the gradient)
(1) 4x + 2y = 8
2y = 8 - 4x
y = -2x + 4
(2) 8x + 4y = -4y
<span> </span>8x = -4y - 4y
y =

y = -x
<span>
Thus the gradient of the two equations are different and as such the two lines are not parallel</span>
B) When two lines are perpendicular, the product of their gradient is -1

p = (-2) * (-1)
p = 2
<span> ∴
the two lines are not perpendicular either.</span>
Thus these lines are SKEWED LINES
2x -20 -1 =0
2x -21=0
2x=21
x= 10.5
Answer:
C. The distribution for town A is symmetric, but the distribution for
town B is negatively skewed.
Step-by-step Explanation:
From the box plots attached in the diagram below, which shows data of low temperatures for town A and town B for some days, we can compare the shapes of the box plot by visually analysing both box plots and how the data for each town is distributed.
=> For town A, the shape of the box plot is symmetric because both quartiles seem equal, and the median also divides the rectangular box into two equal halves. Both whiskers also appear to be of equal lengths.
The box plot for Town A takes a symmetric shape, and this shows a typical normal distribution of data.
=> On the other hand, Town B data distribution is different. The median seem close to the top half of the box and does not divide the box into equal halves. This shows the distribution is skewed. Since the whisker is shorter from the upper end of the box to the left side, we can infer that the distribution for Town B is skewed to the left, and it is negatively skewed.
=> The right comparison of the shapes of the box plots is "C. The distribution for town A is symmetric, but the distribution for town B is negatively skewed."
Answer:
Ancient Greeks
Beginning in the 6th century BC with the Pythagoreans, with Greek mathematics the Ancient Greeks began a systematic study of mathematics as a subject in its own right. Around 300 BC, Euclid introduced the axiomatic method still used in mathematics today, consisting of definition, axiom, theorem, and proof.
Step-by-step explanation:
Answer:
288
Step-by-step explanation:
76+45=121
121+98=219
219+76=295
295-7=288